

SACRED HEART COLLEGE (AUTONOMOUS)

Tirupattur - 635 601, Tamil Nadu, S.India Resi

Ready for Every Good Work Resi : (04179) 220103 College : (04179) 220553 Fax : (04179) 226423

A Don Bosco Institution of Higher Education, Founded in 1951 * Affiliated to Thiruvalluvar University, Vellore * Autonomous since 1987 Accredited by NAAC (4th Cycle – under RAF) with CGPA of 3.31 / 4 at 'A+' Grade

Sacred Heart College (Autonomous), Tirupattur District

1.2.1 List of New Courses

B.Sc. Chemistry

Year /	Davit	Subject	Title of the Doney	Hrs /	Cre	Exam	N	lax Ma	rks
Semester	Part	Subject	Title of the Paper	Week	dits	hours	CIA	Sem	Total
	Ι	Tamil	Tamil - I	5	3	3	25	75	100
	II	English	English - I	5	3	3	25	75	100
	II		Communicative English		1				
I Year /	III	Core	General Chemistry - I	4	4	3	25	75	100
I Iear /	III	Core	General Chemistry - II	3	3	3	25	75	100
Semester	III	Core Practical	Volumetric Analysis	3	3				
	III	Allied	Allied Mathematics - I	<mark>6</mark>	<mark>4</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
	IV		FC	2	1				
	IV		Religion & Ethics - I		1	3	25	75	100
	Ι	Tamil	Tamil - II	5	3	3	25	75	100
	II	English	English - II	5	3	3	25	75	100
	II		Communicative English		1				
I Year /	III	Core	General Chemistry - III	4	4	3	25	75	100
I Ical / II	III	Core	General Chemistry - IV	3	3	3	25	75	100
Semester	III	Core Practical	Volumetric Analysis	3	3	3	40	60	100
	III	Allied	Allied mathematics - II	6	<mark>4</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
	IV		FC	2	1	3	40	60	100
	IV		Religion & Ethics - II	2	1	3	25	75	100
	Ι	Tamil	Tamil - III	5	3	3	25	75	100
	II	English	General English - III	5	3	3	25	75	100
	III	Core	Organic Chemistry - I	<mark>4</mark>	<mark>4</mark>	<u>3</u>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
II Year /	III	Core	Analytical Chemistry - I	3	<mark>3</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
III Semester	III	Core	Qualitative Inorganic	3	3				
		Practical	Analysis	-					
	III	Allied	Allied Physics - I	<mark>6</mark>	<mark>4</mark>	<mark>3</mark>	25 <mark>25</mark>	<mark>75</mark>	<mark>100</mark>
	IV		FC	2	1				
	IV		Human Rights	2	1	3	25	75	100

							-		
	V		DEEDS						
	V		SHELTERS						
			Certificate course - I		2*				
	Ι	Tamil	Tamil - IV	5	3	3	25	75	100
	II	English	English - IV	5	3	3	25	75	100
	III	Core	Inorganic Chemistry - I	<mark>4</mark>	<mark>4</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
	III	Core	Physical Chemistry - I	<mark>3</mark>	<mark>3</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
II Year /	III	Core	Qualitative Analysis	3	3	4.5	40	60	100
IV	m	Practical		5	5	1.5	10	00	100
Semester	III	Allied	Allied Physics - II	<mark>6</mark>	<mark>4</mark>	<mark>3</mark>	<mark>25</mark>	<mark>75</mark>	<mark>100</mark>
	IV		FC	2	1		40	60	100
	IV		Environmental Studies	2	1	3	25	75	100
	V		DEEDS		2				
	V		SHELTERS		2				

		1							
-	III	Core	Organic Chemistry - II	4	4	3	25	75	10
	III	Core	Inorganic Chemistry - II	4	4	3	25	75	10
	III	Core	Physical Chemistry - II	4	4	3	25	75	10
	III	Core	Analytical Chemistry -II	4	4	3	25	75	10
	III	Main Elective	Elective – I	4	2	3	25	75	10
III Year	III	Main Elective	Elective – II	2	2	3	25	75	10
V Semester		SSP	Chemistry for Competitive Exam - I		1*				
Semester	III	Core Practical	Gravimetric & Organic Analysis	3	3		40	60	10
-	III	Core Practical	Physical Chemistry Practicals	3	3		40	60	10
		NME	Chemistry of Drugs and Disease	2	1		25	75	10
			Certificate Course - II		2*				
	III	Core	Organic Chemistry - III	4	4	3	25	75	10
	III	Core	Inorganic Chemistry - III	4	4	3	25	75	10
	III	Core	Physical Chemistry - III	4	4	3	25	75	10
	III	Subject Skill (SS-I)	Paper - I	5	4	3	25	75	10
III Year / VI Semester	III	Subject Skill (SS-II)	Paper - II	5	4	3	25	75	10
	IV	NME	Chemistry in Everyday Life	2	1	3	25	75	10
	III	SSP	Chemistry for Competitive Exam - II		1*				
	III	Core Practical	Gravimetric & Organic Analysis	3	3	6	40	60	10

III	Core Practical	Physical Practicals	Chemistry	3	3	3	40	60	10
		Project*			2*				
		Total		180	148 +2+				
					2*				

* Extra credits

Note:

• SSP/Project/Certificate course - optional

Abbreviations

FC	Foundation Course
Comm. Eng	Communicative English
ET	Ethics
RE	Religion
DEEDS	Dept. of extension and educational services.
HR	Human Rights
SSP	Self study paper
NME	Non-major Elective

List of Electives

Elective - I 4 Hours 1. Pharmaceutical Chemistry 2. Clinical Biochemistry 3. Bio-Inorganic Chemistry 2 Hours **Elective - II** 1. Applied Chemistry 2. Protein Chemistry 3. Computer for Chemists **Subject Skill Papers 5** Hours 1. Polymer Chemistry 2. Industrial and Environmental Chemistry 3. Green Chemistry 4. Materials Chemistry 5. Inorganic Materials of Industrial Importance 6. Reaction Mechanisms and Reagents in Organic Chemistry **Certificate Courses** 2 Hours 1. Organic Farming

2. Industrial Safety

Sacred Heart College (Autonomous), Tirupattur District

1.2.1 List of New Courses

Department: B. SC. CHEMISTRY

S. NO	COURSE CODE	COURSE NAME
1	CH314	Organic Chemistry- I
2	CH315	Analytical Chemistry- I
3	ACH307A	Allied Chem (Mat)- I
4	ACH307B	Allied Chem (Phy)- I
5	CH414	Inorganic Chemistry- I
6	CH415	Physical Chemistry- I
7	ACH408A	Allied Chem (Mat)- II
8	ACH408B	Allied Chem (Phy)- II

US

SYLLAB

Semester–III CH 314 Organic Chemistry –I 4 Hrs/week (4 Credits)

Objectives

- To understand the structure, reaction mechanisms of carboxylic acids.
- To understand rearrangements in organic reaction mechanisms
- To study organo metallic compounds

Unit - I: Carboxylic Acids and their derivatives

hours

- 1.1 Carboxylic acids (aliphatic and aromatic)-Structure-Nomenclature-salts of carboxylic acids-Industrial source. Preparation-Acidic and Alkaline hydrolysis of esters Reactions-Halogenation of aliphatic acids-Hell Vohlard Zelinsky Reaction
- 1.2 Carboxylic acid derivatives (aliphatic)-Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their inter conversion.
- 1.3 preparation and properties of Dicarboxylic acids (oxalic, malonic acids) action of heat on aliphatic dicarboxylic acid, preparation and properties of phthalic acid.
- 1.4 Comparative study of nucleophilicity of acyl derivatives. Mechanism of Reformatsky Reaction and Perkin reaction.

Unit - II: Amines and Diazonium Salts

hours

- 2.1 Amines (Aliphatic and Aromatic): (Upto 5 carbons) Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction.
- 2.2 Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO₂, Schotten Baumann Reaction.
- 2.3 Electrophilic substitution: nitration, bromination, sulphonation of aniline with mechanism.
- 2.4 Diazonium salts: Diazotization (mechanism), Preparation and properties.

Unit - III: Molecular rearrangements

Hours

- 3.1 Molecular rearrangements: Classification anionotropic and cationotropic,Inter molecular and intra molecular rearrangements
- 3.2 Mechanisms, evidences, migratory aptitude of the following rearrangements: carbon to carbon migration Pinocol pinocolone, Benzilic acid rearrangements
- 3.3 Carbon to Nitrogen migration Beckmann, Hoffmann and Curtius rearrangement.
- 3.4 Carbon to oxygen and other migrations Baeyer- Villiger, Stevens rearrangement.

Unit - IV: Organometallics

hours

- 4.1 Organometallic compounds: Formation and synthetic applications of organomagnesium compounds.
- 4.2 Formation and synthetic applications of organozine compounds. Formation and synthetic applications of Organolithium compounds.
- 4.3 Reduction: Mechanism of reduction with sodium borohydride, lithium aluminium hydride.
- 4.4 Wolff-Kishner reaction, MPV reduction and Rosenmunds reduction.

Unit -V: Alkanes, cycloalkanes and active methylene compounds 12 hours

- 5.1 **Alkynes**: General methods of Preparation and properties: Acetylene from CaC₂ and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.
- 5.2 Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO₄, ozonolysis and oxidation with hot alk. KMnO₄
- 5.3 **Cycloalkanes** : Preparation and properties, Bayer's strain theory.

12

12

5.4 **Active methylene compounds:** Preparation and synthetic applications of acetoacetic ester, malonic ester and cyano acetic ester.

References

- 1. R. T. Morrison, and R. N. Boyd, *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), New Delhi, 2008.
- 2. I. L. Finar, *Organic Chemistry* Volume I, 6th edition, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 1973.
- 3. I. L. Finar, Organic Chemistry Volume 2, 5th edition, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 1956.
- 4. A. Bahl and B. S. Bahl, *Advanced Organic Chemistry*, S.Chand publications, New Delhi, 2006.
- 5. M. K. Jain and S.C. Sharma, *Modern Organic Chemistry*, 4th edition, Vishal publisher Co, Jalandar, 2009.

Learning Outcomes

- Design synthetics methods for the preparation of carboxylic acids, amines and diazonium salts, alkynes and cycloalkanes
- Identify different molecular rearrangements and the basis for such behavior with mechanism
- Sketch synthetic strategy using organometallic compounds

Semester – III CH 315 Analytical Chemistry–I 3 Hrs / week (3 Credits)

Objectives

- To learn the basic principles and applications of important analytical techniques
- To develop a sound knowledge in chemistry involved in an analysis

Unit - I: Separation Techniques

- 1.1 Solvent Extraction-Principle-Extracting from solid-liquid phases-Soxhletextractor Extraction by chemically active solvents-Chromatography-types of chromatography.
- 1.2 Principle, techniques and applications of TLC, and Paper. Principle, techniques and applications of Column chromatography.
- 1.3 Gas-Liquid chromatography-Principle, Instrumentation, and applications.

Unit - II: Gravimetric Analysis

- 2.1 Gravimetric analysis-Principle-Conditions of precipitation-choice of Precipitants. Inorganic and Organic Precipitants-specific and selective precipitants.
- 2.2 Masking agents-Precipitation from homogeneous medium-Post precipitation-Coprecipitation-Differences between post and Co-precipitation.
- 2.3 Principles of thermogravimetric analysis and instrumentation-Derivative thermogravimetry-Factors influencing thermogram.DTA-Principle and instrumentation-Applications: TGA-Calcium oxalate monohydrate-DTA-Calcium acetate monohydrate. Differential thermogravimetry, Principle and applications

Unit - III: Radioanalytical Techniques

- 3.1 Radioactive decay process photoelectric, Compton and ion-pair production effects the decay law and units of radioactivity
- 3.2 Detection and measurement of radioactivity-counters and detectors
- 3.3 Isotopic dilution method-Principle-applications-Radioisotopes as tracers.

9 Hours

9 Hours

Unit - IV: Mass spectrometry

- 4.1 Mass spectrometry-Principle-Instrumentation-Dampster spectrometer.
- 4.2 McLaffertary rearrangement The Mass spectrum-fragmentation with illustration: CH₄, C₂H₅OH, CH₃COCH₃,
- 4.3 Determination of molecular formula and molecular weight: Example-Acetic acid.

Unit -V: X ray and Photo Electron Spectroscopy

- 5.1 X-ray Spectroscopy- theory, Instrumentation and X-ray absorption, emission and diffraction
- 5.2 Bragg's equation and applications of x-ray spectroscopy.
- 5.3 Photo electron spectroscopy-Principle, Instrumentation and applications.

References

- 1. Gary D. Christian,; Purnendu K. Dasgupta,; Kevin A. Schug, *Analytical Chemistry*, 7thEdition;Wiley Global Education, 2013.
- 2. Douglas A. Skoog,; F. James Holler,; Stanley R. Crouch, *Principles of Instrumental Analysis*, 6thEdition;Cengage Learning, 2006.
- 3. John H Kennedy, *Analytical Chemistry: Principles*, 2ndEdition; Saunders College Pub, 1990.
- 4. Larry G. Hargis, *Analytical Chemistry: Principles and Techniques*, 1stEdition; Prentice Hall, 1988.
- 5. Reuben Alexander Day,; Arthur Louis Underwood, *Quantitative Analysis*, 6thEdition;Prentice Hall India Learning Private Limited, 1992.
- 6. S. M. Khopkar, *Basic Concepts of Analytical Chemistry*, 3rd Rev Edition; New Age Science Ltd, 2008.
- 7. Frank A. Settle, *Handbook of Instrumental Techniques for Analytical Chemistry*, 1stEdition; Prentice Hall, 1997.
- 8. R.Gopalan, P. S. Subramanian and K. Rengarajan, *Elements of analytical chemistry*, 3rdEdition, Sultan Chand, New Delhi, 2003
- 9. A. K. Srivatsava and P. C. Jain, *Chemical Analysis and Instrumental Approach*, 3rdEdition, S.Chand and Company Ltd., New Delhi, 2010.

Learning Outcomes

- Identify the suitable methods for separation; explain chemical analysis of compounds
- Outline the principle behind gravimetric analysis, radioanalytical techniques, mass spectrometry and list out their applications
- Outline the principle behind X-ray and photoelectron spectroscopy

Semester - III ACH 307 A Allied Chemistry - I (Mathematics) 4 Hrs/week 2 Credits

Objectives

- To make the students understand the mathematical applications of Chemistry
- To understand the fuel and water Chemistry

Unit - I: Basics of Volumetric Analysis Hours

NAAC 5th CYCLE

9 Hours

- 1.1 Solutions, types, methods to express concentration of solutions, Normality, Molarity, mole and Mole fraction, ppm and percentage solutions. Raoult's law, deviations from Raoults law.
- 1.2 Primary standard, secondary standard, characteristic of primary standard, calculation of equivalent weights
- 1.3 Volumetric analysis, principle, types of titration, theory of indicators (acid base and redox),
- 1.4 Significant figures, types of errors(detereminate and indeterminate) in volumetric analysis

Unit - II: Mathematics in Chemistry – I Hours

- 2.1 Group theory Rules, types, sub group, symmetry as elements in group theory
- 2.2 Matrix Representation of symmetry elements, similarity transformation and class.
- 2.3 Point group, Multiplication table for C_2V and C_3V .
- 2.4 Reducible and irreducible representation, reduction of reducible representation using similarity transformation and block diagonalization

Unit - III: Kinetics and Electrochemistry Hours

- 3.1 Differentiation Rate of a reaction, rate law, rate equation for 1st order kinetics, second order equation, half-life, determination of order by graphical and half-life.
- 3.2 Catalysis catalyst, characteristics of catalyst auto catalyst enzyme catalyst promoters catalytic poisoning Active centers Distinction between homogeneous and heterogeneous catalysis Industrial applications of catalysts.
- 3.3 pH and determination by indicator method Buffer solutions Buffer action Derivation of Henderson equation.
- 3.4 Specific conductance, equivalence conductance and molar conductance-variation of equivalence conductance with dilution-Conductometric Titrations.

Unit - IV: Fuels

Hours

- 4.1 Fuels-definition, Conventional and nonconventional fuels, types, calorific value, determination of calorific valuee by Bomb colorimeter
- 4.2 Petroleum cracking, Refining of petroleum by fractional distillation, knocking
- 4.3 Manufacture of Gobar gas. Composition of bio-gas, LPG, CNG and water gas.
- 4.4 Lead storage battery, Zn-Cd cell, Li –ion battery.

Unit - V: Water Chemistry

Hours

- 5.1 Chemistry of water, structure of water, properties of water, types of water (distilled, deionized, conductivity, double distilled water)
- 5.2 Water quality parameters- pH, COD, BOD, TDS, Hardness of water
- 5.3 Sources of water pollution, common water pollutants (dyes, fertilizers, pesticides), methods of removal.
- 5.4 Osmosis, Osmotic pressure, laws of osmosis, Reverse Osmosis and water purification.

References

NAAC 5th CYCLE

12

12

12

- 1. R. D. Madan, *Modern Inorganic Chemistry*, Second edition, S. Chand publications, New Delhi, 2000.
- 2. A. Bahl and B. S. Bahl, *Advanced Organic Chemistry*, S.Chand publications, New Delhi, 2006.
- 3. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 47th Edition, Vishal Publishing Co, Jalandar, 2016.
- 4. Hari Jeevan Arnikar, *Essentials of nuclear chemistry*, New Age International (P) Ltd., 2005.
- 5. Robinson, J.W. Undergraduate Instrumental Analysis, 5th Ed., Marcel Dekker, Inc., New York, 1995.
- 6. K V Raman, *Chemical Applications of Group theory*, TataMc Graw Hill, New Delhi, 2006.

Learning Outcomes

- Explain different types of volumetric methods
- Mathematical background behind the development of group theory and its applications in chemistry
- Outline the principle behind chemical kinetics and electrochemistry
- Understanding of chemistry of fuels and chemistry of water

Semester – III ACH 307 B Allied Chemistry - I (Physics) 4 Hrs/week, 2 Credits

Objectives

- To make the students understand the physical applications of chemistry.
- To understand the chemistry of water

Unit - I: Solutions

Hours

- 1.1 Solutions, types, methods to express concentration of solutions, Normality, Molarity, mole and Mole fraction, ppm and percentage solutions. Raoult's law, deviations from Raoults law.
- 1.2 Primary standard, secondary standard, characteristic of primary standard, calculation of equivalent weights
- 1.3 Volumetric analysis, principle, types of titration, theory of indicators (acid base and redox),
- 1.4 Significant figures, types of errors in volumetric analysis and methods to avoid them

Unit - II: Photo chemistry

Hours

- 2.1 Deference between photochemical and dark reactions laws of photo chemistry, quantum yield
- 2.2 Jablonski diagram, types of excited states, fate of excited molecules (radiative and non-radiative processes)
- 2.3 Photo physical processes, photosensitization, chemilumnescence, laserinstumentation and application
- 2.4 Photochemical process photo reduction, photo dimerization, phot aoxdation, photo synthesis.

12

Unit - III: Spectroscopy

Hours

- 3.1 Properties of electromagnetic radiation, calculation of energy of radiations, introduction to spectroscopy, types of spectroscopy(Absorption, emission, atomic, molecular), classification based on radiation,
- 3.2 Principle of UV-visible spectroscopy, chromophore, auxochrome, types of transition, instrumentation and applications (Estimation of iron and nickel)
- 3.3 IR spectroscopy, types of vibrations, hooks law calculation of frequency of vibrations,
- 3.4 Applications of IR spectroscopy (Detection of functional group-COOH, Aldehyde, Ketone, amine and amide, detection of purity of compounds)

Unit - IV: Thermodynamics

Hours

- 4.1 Terminologies in thermodynamics, types of system, surroundings, types of processes,
- 4.2 First law of thermodynamics enthalpy of processes, limitations of first law. Zeroth law of thermodynamics
- 4.3 Second law of thermodynamics, Carnot engine calculation of efficiency,
- 4.4 Concept of entropy, entropy as criteria for spontaneity, statement of Third law of thermodynamics.

Unit - V: Water chemistry

Hours

- 5.1 Chemistry of water, structure of water, properties of water, types of water (distilled, deionized, conductivity, double distilled water)
- 5.2 Water quality parameters- pH, COD, BOD, TDS, Hardness of water
- 5.3 Sources of water pollution, common water pollutants (dyes, fertilizers, pesticides), methods to remove
- 5.4 Osmosis, Osmotic pressure, laws of osmosis, Reverse Osmosis and water purification.

References

- 1. R. D. Madan, *Modern Inorganic Chemistry*, Second edition, S. Chand publications, New Delhi, 2000.
- 2. A. Bahl and B. S. Bahl, *Advanced Organic Chemistry*, S.Chand publications, New Delhi, 2006.
- 3. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 47th Edition, Vishal Publishing Co, Jalandar, 2016.
- 4. Hari Jeevan Arnikar, *Essentials of nuclear chemistry*, New Age International (P) Ltd., 2005.
- 5. Robinson, J.W. Undergraduate Instrumental Analysis, 5th Ed., Marcel Dekker, Inc., New York, 1995.

Learning Outcomes

- Evaluate the properties of solutions and explain the different laws governing them
- Outline the principle behind photochemistry and spectroscopy
- Explain the importance of thermodynamics and its applications

Semester - IV CH 414	Inorganic Chemistry - I	4	Hrs/week	(4
<mark>Credits)</mark>				

12

Objectives

- To study the chemistry of main groups elements
- To understand the variation in the periodic behaviour •

Unit - I: p – block elements, Chemistry of Group 13 Hours

- 1.1 Main group elements- introduction, general and special characteristics.
- 1.2 Group 13: general properties, electronic configuration, oxidation states, inert pair effect, size of atoms and ions, electropositive nature and ionization energy.
- 1.3 Compounds of group 13: Structure and bonding in diborane. Preparation, properties and structure: Borazine, trihalides- Boron and Aluminium.
- 1.4 Compounds of Boron and Oxygen (structure and properties): Sesquioxides-Borates and Borax.

Unit - II: Chemistry of Group 14

Hours

- Group 14: general properties, electronic configuration, metallic character, and 2.1 oxidation states.
- 2.2 Uniqueness of Carbon and Silicon in comparison to remaining elements. Carbides-Preparation, classification and applications. Allotropes of Carbon- structure, properties and uses.
- Oxides of carbon (structure and properties): CO, CO₂and carbon suboxides. Carbon 2.3 cycle.
- 2.4 Silicates-classification, properties, structure and uses. Silicones- Polysiloxanes,

Unit - III: Chemistry of Group 15

Hours

- Group 15: general properties, electronic configuration, oxidation states. 3.1
- 3.2 Compounds of group 15: Hydrides of Nitrogen and Phosphorus, Haber's process, Oxides of Nitrogen: NO, NO₂, N₂O, and N₂O₃ (structure, properties and uses).
- 3.3 Oxo-acids of Nitrogen and Phosphorous- preparation and structure.
- 3.4 Polyphosphates-preparation and structure.

Unit - IV: Chemistry of Group 16

Hours

- Group 16- chalcogens: general properties, electronic configuration, oxidation states. 4.1 Oxides- classification, structure and properties.
- 4.2 Oxo-acids and peroxo-acids of Sulphur.
- 4.3 Hydrogen peroxide and Hydrogen sulphide- preparation and properties.
- 4.4 Allotropes of Oxygen and Sulphur. Chemistry of Ozone.

Unit V: Chemistry of Halogens and Noble Gases Hours

- 5.1 Group 17: electronic configuration, oxidation states, ionization energies, and electron affinity. Hydrogen halides- preparation, properties and uses. Halides- ionic, molecular and bridging.
- 5.2 Preparation and properties of Oxo-acids- Hypohalous acids, halous acids, Halic acids and perhalic acids. Pseudo halogens and halides.
- 5.3 Preparation, properties and structure of Interhalogen compounds types; ICl, BrF₃, ClF₅ and IF₇.

NAAC 5th CYCLE

12

12

12

12

5.4 Noble gases: Xenon clatharates. Preparation properties and structure of Xenon fluorides.

References

- 1. J. D. Lee, *Concise Inorganic Chemistry*, Chapman and Hall: London, 1961.
- 2. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, 33rd Edition, Vishal Publishing Co, Jalandar, 2004.
- 3. R. D. Madan, *Modern Inorganic Chemistry*, Second edition, S. Chand publications, New Delhi, 2000.
- 4. A. G. Sharpe and C. E. Housecraft, *Inorganic Chemistry* Vol-I, 3rd edition, Pearson prentice Hall, New York, 2008.

Learning Outcomes

- Identify the chemistry of p-block elements (Group 13,14,15,16 and 17) and noble gases
- Explain the periodic trends, chemical reactivity and physical properties of p-block elements
- List out important inorganic compounds of p-block elements, their synthesis and applications
- Semester IV CH 415 Physical Chemistry I 3 Hrs/week (3 credits)

Objectives

- To learn the importance of Chemical potential and its significance
- To understand the basic concepts of quantum chemistry and phase equilibria
- To learn the concepts regarding chemical kinetics and apply them for kinetics related problems in photochemistry

Unit - I: Chemical Potential

- 1.1 Spontaneous reaction- Standard free energy change- Standard free energy change of formation of compounds (ΔG_{f}^{0})
- 1.2 Law of Mass action- Thermodynamic equilibrium of Law of the Chemical equilibrium- Van't Hoff reaction isotherm- Relationship between Kp, Kc and Kx-DeDonder's Concept- Chemical affinity
- 1.3 Thermodynamic relations for chemical affinity-The van't Hoff equation-Lechatelier's principle- Effect of change of concentration, temperature and pressure.

Unit - II: Phase Equilibria - I

- 2.1 Phase- component- degrees of freedom- condition for equilibrium between phases-Gibb's phase rule- derivation.
- 2.2 One component system: water, sulphur and helium- Polymorphism
- 2.3 Two component system: construction of phase diagram(cooling curve method)- Pb-Ag System and KI- Water system

Unit - III: Phase Equilibria - II

- 3.1 Congruent melting point system (Mg and Zn)- FeCl₃- H₂O system
- 3.2 Incongruent melting point system (Na- K). Three component system: Acetic acid-water-butanol.

9 Hours

9 Hours

3.3 The Ehrenfest classifications of phase transition

Unit - IV: Solutions

- 4.1 Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law non-ideal solutions.
- 4.2. Vapour pressure-composition and temperature composition curves of ideal and nonideal solutions. Distillation of solutions. Lever rule. Azeotropes.
- 4.3 Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

Unit - V: Colloidal state

- 5.1 Origin of charge on colloids- electrical double layer-Electrokinetic properties (Electrophoresis, electro osmosis)
- 5.2 Surfactants: Classification- Micelle and reverse micelle formation- shape and structure of micelles- critical micelle concentration, aggregation number
- 5.3 Factors affecting CMC in aqueous media- Thermodynamics of Micellization

References

- 1. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 47th Edition, Vishal Publishing Co, Jalandar, 2016.
- 2. D. N. Bajpai, Advanced Physical Chemistry, 2nd Edn., S. Chand& Company, New Delhi, 1998.
- 3. P. L. Soni, O. P Dharmarha and U. N. Dash, *Text Book of Physical Chemistry*, Sultan Chand & Company Ltd., New Delhi, 2001.
- 4. A.S. Negi and S.C. Anand, *A text book of Physical Chemistry*, Wiley Eastern Ltd, New Delhi, 1984.
- 5. S. Glasstone, *Text book of physical chemistry*, 2nd revised edition, Macmillan, United Kingdom, 1980.

Learning Outcomes

- Explain the significance Gibbs free energy and its applications in thermochemical reactions
- Derive the phase rule and construct phase diagrams
- List out the laws and the various properties of solutions and colloidal state

9 Hours

Semester - IV ACH 408 A Allied Chemistry - II (Mathematics) 4 Hrs/week, 2 Credits

Objectives

- To make the students understand the mathematical applications of chemistry
- To be familiar with chemistry in our surrounding.

Unit - I: Chemistry of Organic analysis Hours

- 1.1 Organic compounds definition, Classification based on structure and functional group
- 1.2 Definition of aliphatic and aromatic compounds, conditions for aromaticity, tests to detect aromaticity
- 1.3 Tests to detect unsaturation in organic compounds, Lassaigne's test,
- 1.4 Reactions involved in detection of carboxylic acids, aldehydes, ketones, phenols, amides and carbohydrates,

Unit - II: Nuclear Chemistry

Hours

- 2.1 Natural Radioactivity, types of radioactive rays, difference between chemical and nuclear rections.
- 2.2 Representation of nuclear reaction, types of nuclear reactions, calculation of nuclear Q value, N/P ratio, groupdisplacement law
- 2.3 Nuclear Fision, atom bomb and Nuclear reactor components Fusion, hydrogen bomb, stellar energy,
- 2.4 applications of radio isotopes in agriculture, medicine, and industry, carbon and rock dating

Unit - III: Bio molecules

Hours

- 3.1 Carbohydrates, classification, chemical properties of glucose and fructose
- 3.2 Amino acids, classification, standard amino acids, physical and chemical properties of glycine. Proteins-classification based on function, primary and secondary structure.
- 3.3 Vitamins -types, functions, sources, deficiency disease, daily requirement, vitaminoses
- 3.4 Nucleic acid, classification, structure and functions

Unit - IV: Chemistry of Drugs

Hours

- 4.1 Drugs definition Types antibiotics, antiseptic, anti-inflammatory, analgesics, antipyretics
- 4.2 Structure, therapeutic uses and side effects of penicillin, Chloramphenicol, tetracycline
- 4.3 Structure, therapeutic uses and side effects of, Paracetomol and aspirin
- 4.4 Preparation and uses of aluminum hydroxide gel, alum, milk of magnesia, Drug abuse implications, evil effects of alcohol

Unit - V: Soil Chemistry

Hours

5.1 Composition of soil, types of soil, need for cultivation, need for soil testing, nitrogen fixation, nitrogen cycle.

NAAC 5th CYCLE

12

12

12

12

- 5.2 Classification of nutrients Macro and micro nutrients for soil Biological role of micro and macro nutrients Na, Ca, Mg, Fe, Zn.
- 5.3 Need for fertilizers, characteristics of good fertilizers, types of fertilizers
- 5.4 Nitrogenous fertilizers, Phosphorous fertilizers, potassium fertilizers, Manures and its advantages over chemical fertilizers.

References

- 1. R. D. Madan, *Modern Inorganic Chemistry*, Second edition, S. Chand publications, New Delhi, 2000.
- 2. A. Bahl and B. S. Bahl, *Advanced Organic Chemistry*, S.Chand publications, New Delhi, 2006.
- 3. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 47th Edition, Vishal Publishing Co, Jalandar, 2016.
- 4. Hari Jeevan Arnikar, *Essentials of nuclear chemistry*, New Age International (P) Ltd., 2005.
- 5. JayShree Ghosh, Applied Chemistry, New Age Publications, Meerut, 2010.
- 6. Jayashree Ghosh, *Textbook of Pharmaceutical chemistry*, Rajendra ravindra printers Pvt. Ltd., New Delhi, 2010.

Learning Outcomes

- List out the theory governing organic analysis and outline the principles and applications of nuclear chemistry
- Identify different types of biomolecules (Carbohydrates, proteins, nucleic acids and vitamins)
- Formulate the chemistry behind drugs
- List out the chemistry behind soil analysis

Semester - IV ACH 408 B Allied Chemistry - II (Physics) 4 Hrs/week, 2 Credits Objectives

- To make the students understand the physical applications of chemistry
- To understand the chemistry of soil.

Unit - I: Organic Compounds Hours

- 1.1 Organic compounds definition, Classification based on structure and functional group
- 1.2 Definition of aliphatic and aromatic compounds, conditions for aromaticity, tests to detect aromaticity
- 1.3 Tests to detect unsaturation in organic compounds, lassaigne's test,
- 1.4 Reactions involved in detection of carboxylic acids, aldehydes, ketones, phenols, amides and carbohydrates,

Unit - II: Nuclear Chemistry

Hours

- 2.1 Natural Radioactivity, types of radioactive rays, difference between chemical and nuclear rections.
- 2.2 Representation of nuclear reaction, types of nuclear reactions, calculation of nuclear Q value, N/P ratio, group displacement law
- 2.3 Nuclear Fission, atom bomb and Nuclear reactor, Fusion, hydrogen bomb, stellar energy,
- 2.4 applications of radio isotopes in agriculture, medicine, and industry, carbon and rock dating

Unit - III: Kinetics and Catalysis

Hours

- 3.1 Rate-order-molecularity-derivation of rate equation for first order reaction-halflife period.
- 3.2 Determination of order of the reaction: half-life method and isolation method. Activation energy-arrehenius equation-Collision theory,
- 3.3 Catalysis catalyst, characteristics of catalyst auto catalyst enzyme catalyst promoters catalytic poisoning Active centers.
- 3.4 Distinction between homogeneous and heterogeneous catalysis Industrial applications of catalysts.

Unit - IV: Electro Chemistry

Hours

- 4.1 Types of Electrolytes, Specific conductance, equivalent conductance, variation of equivalence conductance with dilution
- 4.2 Definition of Faradays law and Ostwald dilution law. Kohlraush's law and its application, conductometric titrations.
- 4.3 Cell constant, representation of cell, reduction potential, electrochemical series
- 4.4 Lead storage battery, Zn-Cd cell, Lithium-ion

NAAC 5th CYCLE

12

12

12

Unit - V: Soil Chemistry

Hours

- 5.1 Composition of soil, types of soil, need for cultivation, need for soil testing, nitrogen fixation, nitrogen cycle.
- 5.2 Classification of nutrients Macro and micro nutrients for soil Biological role of micro and macro nutrients Na, Ca, Mg, Fe, Zn.,
- 5.3 Need for fertilizers, characteristics of good fertilizers, types of fertilizers
- 5.4 Nitrogenous fertilizers, Phosphorous fertilizers, potassium fertilizers, Manures and its advantages over chemical fertilizers

References

- 1. R. D. Madan, *Modern Inorganic Chemistry*, Second edition, S. Chand publications, New Delhi, 2000.
- 2. A. Bahl and B. S. Bahl, *Advanced Organic Chemistry*, S.Chand publications, New Delhi, 2006.
- 3. B. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 47th Edition, Vishal Publishing Co, Jalandar, 2016.
- 4. Hari Jeevan Arnikar, *Essentials of nuclear chemistry*, New Age International (P) Ltd., 2005.
- 5. Jayashree Ghosh, *Fundamental concepts of Applied Chemistry*, S Chand Publications, New Delhi, 2006.

Learning Outcomes

- List out the theory governing organic analysis and outline the principles and applications of nuclear chemistry
- Outline the principle behind chemical kinetics and electrochemistry
- List out the chemistry behind soil analysis