

SACRED HEART COLLEGE (AUTONOMOUS)

Tirupattur – 635 601, Tamil Nadu, S.India

Ready for Every Good Work Resi : (04179) 220103 College : (04179) 220553

Fax : (04179) 226423

A Don Bosco Institution of Higher Education, Founded in 1951 * Affiliated to Thiruvalluvar University, Vellore * Autonomous since 1987 Accredited by NAAC (4th Cycle – under RAF) with CGPA of 3.31 / 4 at 'A+' Grade

Sacred Heart College (Autonomous), Tirupattur District

1.2.1 List of New Courses

B.Sc. Physics

Samaatan	Donor	Title of the Denor	Hours/	s/ credits	Marks	
Semester	Paper	The of the raper	Week		CA	SEM
	Main Core	Mechanics	3	4	30	70
	Main Core	Properties of matter	3	4	30	70
	Allied	Allied Mathematics - I	6	4	30	70
	Main Core Practicals	Physics Main Practicals – I	4	2	40	60
Ι	Language	Tamil	5	3		
	Language	General English	5	3		
		Communicative English	-	1		
	Life	Personal Skills	2	1		
	Education	Christian Religion-1 / Value Education-1	2	1		
TOTAL			30	23		

Semester	Paper	Title of the Paper Hours/ Credits		Hours/ Credits		arks
~	. T		Week		CA	SEM
	Main Core	Heat and Thermodynamics	3	4	30	70
	Main Core	Sound	3	4	30	70
II	Main Core Practicals	Physics Main Practicals – I	4	2	40	60

	Allied	Allied Mathematics – II	6	4	30	70
	Language	Tamil	5	3		
	Longuage	General English	5	3		
	Language	Communicative English		1		
	Life Education	Social Skills	2	1		
		Christian Religion-2/Value Education-2	2	1		
	TOTAL			23		

Semester	Domon	Title of the Denor	Hours/ Week	Credits	Marks	
	raper	The of the Paper			CA	SEM
	Main Core	Electromagnetism	<mark>3</mark>	<mark>4</mark>	<mark>30</mark>	<mark>70</mark>
	Main Core	Optics	<mark>3</mark>	<mark>4</mark>	<mark>30</mark>	<mark>70</mark>
	Main Core Practicals	Physics Main Practicals – II	4	2	40	60
	Allied	Allied Chemistry -I	6	4	30	70
III	Language	Tamil	5	3		
	Language	General English	5	3		
	Life Education	Employability Skills –1	2	1		
	Life Education	Environmental Science	2	1		
	Extra credit Course	Special Project- I	-	2#		100
TOTAL			30	$22+2^{\#}$		

Somostor	Bonon Title of the Bonon Hou		Hours/	Credita	Marks	
Semester	raper	The of the Paper	Week	Creatis	CA	SEM
	Main Core	Atomic Physics	<mark>3</mark>	<mark>4</mark>	<mark>30</mark>	<mark>70</mark>
	Main Core	Spectroscopy	<mark>3</mark>	<mark>4</mark>	<mark>30</mark>	<mark>70</mark>
IV	Main Core Practicals	Physics Main Practicals – II	4	2	40	60
	Allied	Allied Chemistry –II	6	4	30	70
	Language	Tamil	5	3		
	Language	General English	5	3		

	Life Education	Employability Skills –2	2	1	
	Life Education	Human Rights	2	1	
	Extra credit Course	Special Project II (Repair and Maintenance of Lab Equipments)	-	2#	100
		DEEDS	-	2	
	Extension	SHELTERS	-	2	
TOTAL			30	26+2#	

Semester	Paper	Title of the Paper	er Hours/		Marks	
201102001	I	*	Week		CA	SEM
	Main Core	Classical mechanics and Statistical physics	4	4	30	70
	Main Core	Basic Electronics	4	4	30	70
	Main Core	Solid State Physics	4	4	30	70
	Main Core	Mathematical Physics	4	4	30	70
V	Main Core	Physics Main Practicals – III (General experiments)	3	3	40	60
	Main Core	Physics Main Practicals – IV (Electronic experiments)	3	3	40	60
	Subject Elective	 Crystal Growth & Nano Technology Electronic communication systems Renewable Energy and Energy Harvesting 	3	2	30	70
	Subject Elective	 Applied optics 8085 Microprocessor and its applications Medical Physics 	3	2	30	70
	Self Study Paper	Astrophysics	-	1*	-	100
	Non Major Elective	Repair and maintenance of household appliances	2	1	30	70
TOTAL			30	27+1*		

			Hours		Marks		
Semester	Paper	Title of the Paper		Credits	CA	SEM	
VI	Main Core	Applied Electronics	5	5	30	70	
	Main Core	Nuclear Physics	5	5	30	70	
	Main Core	Quantum Mechanics and Relativity	4	4	30	70	
	Main Core	Physics Main Practicals – III (General experiments)	2	2	40	60	

Main Core	Physics Main Practicals – IV (Electronic experiments)	2	2	40	60
Subject skill	Electrical circuits and Networks	5	4	40	60
Subject skill	Basic Instrumentation	5	4	40	60
Self Study Paper	Physics Revisited	_	1*	-	100
Non Major Elective	Physics in everyday life	2	1	30	70
Total			27+1*		

Sacred Heart College (Autonomous), Tirupattur District

1.2.1 List of New Courses

Department: B.SC. Physics

Electromagnetism

Semester : III

Hours / Week :

3

Course code :

Credits

:

S. No	Course Code	Course Name
1.	P312	Electromagnetism
2.	P313	Optics
3.	P412	Atomic physics
4.	P413	Spectroscopy

Objectives

- To introduce the students to the basic concepts of Electrostatics and Electricity
- To explain the principle and working of Potentiometer and Carey Foster's Bridge
- To provide an overview of the fundamental principles of Coulomb's law, Biot-Savart law and magneto statics.
- To Expose the students to Maxwell's equations

Learning outcomes

On the completion of this course, students will be able to:

- Explain and differentiate between electric field and electric potential
- Illustrate the coulomb's law
- Describe electromagnetic induction and related concepts and make calculations using faraday's laws.
- Describe the properties of Dia, Para and Ferro magnetic materials and identify the form of magnetism possessed by a material.

Unit I: Electrostatics and Current electricity

Coulomb's law – permittivity – relative permittivity – electric intensity – electric induction – electric potential – electric current – relation between electric field and electric potential in vector form – Gauss law – Carey foster's bridge – theory – measurement of resistance and temperature coefficient of resistance of a coil – Potentiometer – principle – resistance of potentiometer wire –measurement of emf of a thermocouple.

Unit II: Magnetic effect of current

Ampere's circuital law – curl of magnetic field - Biot-Savart law – magnetic induction at a point on the axis of a circular coil carrying current –Force on a current carrying conductor placed in a magnetic field – theory of moving coil ballistic galvanometer – damping correction – figure of merit of BG – absolute capacitance of a capacitor – growth and decay of C-R circuit.

Unit – III: Magnetism

Magnetic properties of materials: Magnetic intensity, permeability, magnetic susceptibility – Curie temperature – Magnetic materials: dia, para, ferro, antiferro, ferri – Langevin's theory of dia magnetism and para magnetism – general applications of magnetic materials.

flert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Unit – IV: Electromagnetic Induction

Faraday's laws of electromagnetic induction (vector form) – Lenz's law – equation of continuity of current – displacement current – self induction – co-efficient of self induction – determination of self inductance by Anderson's bridge method – mutual induction – co efficient of mutual induction – absolute mutual inductance by B.G.

Unit – V: Maxwell's equations and Electromagnetic wave propagation

Maxwell's equations – significance – Maxwell's equation in free space, dielectric and conducting medium – Poynting theorem – energy density in electromagnetic field – Poynting vector –electromagnetic wave propagation through vacuum and dielectric medium.

Books for study

- 1. R. Murugeshan, Electricity and Magnetism, S. Chand & co, New Delhi, 2006
- 2. M. Narayanamurthy., N. Nagarathanam., Electricity & Magnetism, Meerut, National publishing Co, 2001

Books for reference

- 1. K. K. Tewari, Electricity and Magnetism, Magnetism, S Chand & co., New Delhi, 2001.
- 2. Brijlal and N. Subramanyan, Electricity and Magnetism, Agra., Ratan & Prakash, 1995.
- 3. D. L. Shegal, K. L. Chopra, N. K. Sehgal, Electricity and Magnetism, Sultan Chand & Sons., New Delhi, 2006.

- 4. B. D. Dugal and C. L. Chopra. Fundamentals of Electricity and Magnetism, Shobanlal Nagin Chand, New Delhi, 2000.
- 5. Edward Purcell, Electricity and Magnetism, Cambridge University press, United Kingdom, 2011.
- 6. Dugald C. Jackson, An elementary book on Electricity, Magnetism and their Applications, <u>The Macmillian company</u>, New York, 1994.

- 1. <u>http://www.ncert.nic.in/html/learning_basket/electricity/electricity/electrostatics/laws_of_electrostatics.htm</u>
- 2. <u>www.learnnext.com/nextgurukul/wiki/concept/CBSE/X/Science/Magnetic-Effects-of-Electric-Current.htm</u>
- 3. <u>http://www-spof.gsfc.nasa.gov/Education/Imagnet.html</u>
- 4. <u>http://www.electronics-tutorials.ws/electromagnetism/electromagnetic-induction.html</u>
- 5. <u>http://www.maxwells-equations.com/</u>

Albert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

		Optics	
Semester	: III	Hours / week	:
		3	
Course code 4	:	Credits	:

Objectives

- Providing a broad overview of Aberration in lenses, Achromatic doublets, interference, diffraction and polarization
- Exposing the students to the principles and applications of LASER and MASER

Learning Outcomes

On completion of this course, students will be able to

- Understand the meaning of spherical aberration and Chromatic aberration and the methods of minimizing them.
- Explain the concepts of Diffraction, Interference and Polarization.
- Describe the fundamental operational principles of major types of LASER and MASER.

Unit – I: Geometrical Optics

Dispersion produced by a prism – angular dispersion – dispersive power – combination of prisms to produce (i) Dispersion without deviation (ii) deviation without dispersion – direct vision spectroscope.

Aberration in lenses – spherical aberration – methods to minimize spherical aberration – chromatic aberration – achromatic combination of two lenses (i) in contact (ii) out of contact.

Unit– II: Interference

Interference: Amplitude and wave front – Young's double slit experiment – phase change on reflection: Stokes' treatment – Interference in thin films – condition for maxima and minima – Air wedge – thickness of thin wire – Newton's Rings: measurement of wavelength and refractive index – Michelson's interferometer – determination of wavelength – wavelength difference.

Unit – III: Diffraction

Fraunhofer diffraction: Single slit– double slit – Fresnel diffraction: Half – period zones – zone plate – Fresnel diffraction pattern of a straight edge, a slit and a wire using half –period zone analysis – plane transmission grating – theory – determination of wavelength.

Unit – IV: Polarization

Transverse nature of light waves – double refraction – optical axis – plane polarized light – production and analysis by Nicol prism – circular and elliptical polarization – optical activity – polaroids – applications.

Albert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Unit – V: LASER and MASER

Laser: characteristics – stimulated absorption – spontaneous emission and stimulated emission –population inversion – pumping – types – principle of Laser action – condition for Laser action – CO_2 Laser – semiconductor Laser – applications of Laser. Maser – principle of Maser action – Ammonia gas Maser.

Books for study

- 1. Brij Lal and N. Subramanyam, A text book of Optics, Niraj Prakahshan, New Delhi, 2003.
- 2. R. Murugesan, Modern Physics, S. Chand & Co. Ltd., New Delhi, 2001.
- 3. C.L. Arora, Optics, S. Chand & Co. Ltd., New Delhi, 1999.
- 4. S. Shanmugam, Nanotechnology, MJP Publishers, Chennai, 2010.

Books for reference

- 1. R. Murugesan., Optics and spectroscopy, S. Chand & company Ltd., New Delhi, 2003.
- 2. N. Subrahmanyam and Brijlal, Atomic Physics, S.Chand and Company Ltd., New Delhi, 2007.
- 3. S. N. Ghoshal, Atomic and Nuclear Physics, S.Chand and Company Ltd., New Delhi, 2004.
- 4. K. K. Chattopadhyay, A. N. Banerjee, Introduction to Nanoscience and Technology, PHI learning Pvt. Ltd, New Delhi, 2009.
- 5. Charles. P. Poole, Frank. J. Owens, Introduction to nanotechnology, A John Wiley & Sons publications, New Jerssey, 2003.

- 1. http://www.rpi.edu/dept/phys/Dept2/APPhys1/optics/optics/node7.html
- 2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/fresnelcon.html</u>
- $3. \ \underline{www.microscopyu.com/techniques/polarized-light/introduction-to-polarized-light}$
- 4. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/optmod/fibopt.html</u>

Albert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Atomic Physics

Semester : IV Course Code : Hours/week : 3 Credits : 4

Objectives

- To make the students to understand the concepts of positive rays and X- rays and their applications.
- To study atom models and their importance.
- To acquire the knowledge about magneto optical properties of spectrum and photo electric effect.

Learning Outcomes

On successful completion of this course, students will be able to

- Describe how positive rays and X-rays are formed.
- Discuss the production of x-rays as the inverse of the photo electric effect.
- Describe the origin of sub-shells, shells and multiplets for atoms with two or more electrons.
- Carry out experimental and theoretical studies on atoms, with focus on the structure and dynamics of atoms.

Unit - I: Positive rays

Discovery – properties – positive ray analysis: Thomson's Parabola method – detection of isotopes - Dempster's mass spectrographs - Dunnington's mass spectrograph – uses of mass spectrograph.

Unit - II: Photo-electric effect

Drawbacks of classical wave theory – photon – Photo-electric effect – laws of photoelectric emission – Richardson and Compton experiment – relation between photoelectric current and retarding potential – relation between velocity of photoelectrons and frequency of light – Einstein's photoelectric equation.

Unit - III: Structure of the atom

Vector atom model – spatial quantization and electron spin – quantum numbers associated with electron – Pauli's exclusion principle – spin-orbit coupling in atoms: LS and jj couplings – periodic classification of elements.

Unit - IV: Magneto optical properties of spectrum

Magnetic dipole – moment due to orbital motion of the electron – magnetic dipole moment due to spin – Stern and Gerlach experiment – normal and anomalous Zeeman effect – experiment – Larmor's theorem – Paschen-Back effect.

flert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Unit - V: X-ray spectra

X-Rays: properties – diffraction of X-rays – Bragg's law – measurement of wavelength of X-rays – Bragg's X-ray spectrometer – Moseley's law – importance – types of X-ray spectra – continuous and characteristic X-ray spectra – Compton effect – Compton wavelength – experimental verification.

Books for study

- 1. R. Murugeshan, Modern Physics, S. Chand and Company Ltd., Ram Nagar, New Delhi, 2009.
- 2. N. Subrahmanyam and Brijlal, Atomic Physics, S. Chand and Company Ltd., New Delhi, 2010.

Books for reference

- 1. S. N. Ghoshal, Atomic and Nuclear Physics, Volume–I, S. Chand and Company Ltd., Ram Nagar, New Delhi, 1996.
- 2. Arthur Beiser, Concepts of Physics, Tata Mcgraw Hill Sixth Edition, 2003.
- 3. Sehgal Chopra Sehgal Modern Physics, Sultan Chand Sons, New Delhi, 2004.

- 1. http://www.preservearticles.com/201012302039/positive-rays-properties.html
- 2. <u>http://subhasishchandra.com/wp-content/uploads/2012/08/Motion-of-Charged-Particles-in-Electric-and-Magnetic-Fieldsx.pdf</u>
- 3. <u>http://www.citycollegiate.com/xii_chpxiv1.htm</u>
- 4. http://www.readorrefer.in/article/Photoelectric-effect-Dual-Nature-of-Radiation_2942/
- 5. http://www.physics-assignment.com/vector-atom-model
- 6. <u>http://www.chembio.uoguelph.ca/educmat/chm364_preuss/1_10%20Vector%20mo</u> <u>del.pdf</u>
- 7. <u>www.quora.com/What-is-an-expression-for-the-magnetic-dipole-moment-of-a-</u> revolving-electron
- 8. <u>http://www.physics.nus.edu.sg/~L3000/Level3manuals/stern-Gerlach.pdf</u>

- 9. http://www.physics-assignment.com/zeeman-effect
- 10. http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/paschen.html
- 11. http://www.readorrefer.in/article/Bragg---s-law-for-X-ray-diffraction_2933/
- 12. <u>http://www.readorrefer.in/article/X-ray-spectra---continuous-and-characteristic-X-ray-spectra_2935/</u>
- 13. http://www.readorrefer.in/article/Bragg-s-X-ray-spectrometer_2934/
- 14. <u>http://www.readorrefer.in/article/Moseley-s-law-and-Applications-of-Moseley-s-law_2936/</u>
- 15. http://nptel.ac.in/courses/122101002/downloads/lec-25.pdf

Albert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Spectroscopy

Semester : IV

Course code :

Objectives:

- To provide a knowledge of interaction of electromagnetic radiation with atoms and molecules.
- To expose to the various spectroscopic techniques and their usage.

Learning outcome:

- Students will understand the fundamentals of electromagnetic radiations
- Students will realize the importance of spectroscopy and spectrometers

UNIT- I: Principles of Spectroscopy

Eelectromagnetic spectrum – interaction of electromagnetic radiation with matter – scattering, dispersion and transmission of radiation – Born Oppenheimer approximation – vibrational, rotational and electronic energy levels – types of molecular spectra – selection rules – characteristic features for absorption and emission – band width – factors contributing to band width.

UNIT-II: Electronic Spectroscopy

Fundamental laws of absorption- Lamberts Bouguer's law, Beer's law – deviations from Beer's law – absorptivity and absorbance – absorbance and transmission spectrum – origin of visible and UV spectra – Frank-Condon principle – transition probability – UV-Visible spectrophotometer- photoelectric colorimeter

UNIT – III: Vibrational Spectroscopy

Vibrational spectroscopy of diatomic and simple molecules: harmonic Oscillator – anharmonic oscillator – normal modes of vibration of CO_2 and H_2O molecules – Experimental setup of IR spectrometer.

Raman Effect – classical theory of Raman scattering – quantum theory of Raman scattering (no derivation) – experimental setup of Raman spectrometer – comparison of IR and Raman spectroscopy

UNIT – IV: Rotational Spectroscopy

Pure rotational spectra of diatomic molecules, polyatomic molecules, linear molecules, symmetric top molecules – microwave spectrometer -Stark effect - applications to chemical analysis.

> Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,

Hours/week : 3 Credits : 4

UNIT-V: Resonance Spectroscopy

Principle of NMR – chemical shift – shielding and deshielding effects – factors affecting chemical shift – experimental methods: Single coil and double coil – Applications. Principle of ESR – instrumentation – applications.

Books for study

- 1. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy, 5th Edition, Tata McGraw-Hill Publications, New Delhi, 2002.
- G. Aruldas, Molecular Structure and Spectroscopy, 2nd Edition, Prentice Hall of India Pvt.Ltd. New Delhi, 2007.
- 3. D. N. Satyanarayana, Vibrational Spectroscopy and Applications, New Age International Publications, New Delhi, 2004.

Books for reference

- 1. D. L. Pavia, G. M. Lampman, G. S. Kriz, Spectroscopy, Pengage, Indian Edition, 2011.
- 2. Towne and Schawlow, Microwave Spectroscopy, McGraw Hill, New Delhi, 1995.
- 3. H. Kaur, Spectroscopy, Pragagi Edition, 7th Edition Meerut, 2012.

- 1. http://www.kinetics.nsc.ru/chichinin/books/spectroscopy/Struve86.pdf
- 2. <u>http://www.phy.pmf.unizg.hr/~dandroic/nastava/fem/temp/00/Handbook%20Of%2</u> 0Spectroscopy%20-%20G.%20Gauglitz%20,%20T.%20Vo-Dinh.pdf
- 3. <u>http://en.wikipedia.org/wiki/Rotational%E2%80%93vibrational_spectroscopy</u>
- 4. www.youtube.com/watch?v=TMLnUmbLwUI

Albert

Dr.A. ALBERT IRUDAYARAJ Associate professor & Head PG & Research Department of Physics Secred Heart College (Autonomous) TIRUPATTUR - 635 601. VIr.Dt.,