PG \& Research Department of Mathematics

Sacred Heart College (Autonomous),

Tirupattur, Vellore District - 635601

Affiliated to Thiruvalluvar University, Vellore
Accredited by NAAC (4th Cycle - under RAF) with
CGPA of $3.31 / 4$ at 'A+' Grade

PG Programme (Mathematics)

```
2021-22 onwards
```


OUTCOME-BASED EDUCATION (OBE) LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK (LOCF)

OBE is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience, each student should have achieved the goal. There is no single specified style of teaching or assessment in OBE; instead, classes, opportunities and assessments should all help the students achieve the specific outcomes
Outcome Based Education, as the name suggests depends on Outcomes and not Inputs. The outcomes in OBE are expected to be measurable. In fact each Educational Institute can state its own outcomes. The ultimate goal is to ensure that there is a correlation between education and employability
Outcome -Based Education (OBE): is a student-centric teaching and learning methodology in which the course delivery, assessment are planned to achieve, stated objectives and outcomes. It focuses on measuring student performance i.e. outcomes at different levels.

Some important aspects of the Outcome Based Education

Course: is defined as a theory, practical or theory cum practical subject studied in a semester.
Course Outcomes (COs): are statements that describe significant and essential learning that learners have achieved, and can reliably demonstrate at the end of a course. Generally three or more course outcomes may be specified for each course based on its weightage.
Programme: is defined as the specialization or discipline of a Degree.
Programme Outcomes (POs): Programme outcomes are narrower statements that describe what students are expected to be able to do by the time of graduation. POs are expected to be aligned closely with Graduate Attributes.

Programme Specific Outcomes (PSOs):

PSOs are what the students should be able to do at the time of graduation with reference to a specific discipline.
Programme Educational Objectives (PEOs): The PEOs of a programme are the statements that describe the expected achievement of graduates in their career, and also in particular, what the graduates are expected to perform and achieve during the first few years after Graduation.

Programme Outcomes at SHC

 Programme Outcomes at Postgraduate Level

 Programme Outcomes at Postgraduate Level}

Postgraduates will be able to:

PO1: Demonstrate intense knowledge in their discipline
PO2: Exhibit specialized skills to plan, analyze and draw conclusions related to their respective field of study in theory and in practice

PO3: Develop expertise in their field of study through projects and research activities
PO4: Prepare themselves to incorporate new technologies in their own discipline and demonstrate excellence in their area of specialization

PO5: Develop social and ethical responsibility in the transfer and management of knowledge

Programme Outcomes at Research Level

Research scholars will be able to:

PO1: Develop and demonstrate deep knowledge in the field of study to become globally competent
PO2: Manage information, undertake investigations, conduct field study, do accurate document, network with experts and mobilize resources and skills

PO3: Develop and exhibit scientific temper and adopt professional code of conduct in pursuit of research activities

Mathematics Majors should:

PSO 1: Apply the knowledge of mathematical concepts in interdisciplinary fields. Understand the nature of abstract mathematics and explore the concepts in further details.
PSO 2: Identify challenging problems in mathematics and find appropriate solutions.
PSO 3: Pursue research in challenging areas of pure/applied mathematics. Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and scientific investigations.

PSO 4: Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations. Qualify national level tests like NET/GATE etc.

PSO5: Effectively communicate and explore ideas of mathematics for propagation of knowledge and popularization of mathematics in society.

Proposed Internal Components

For the Batch 2021-22

Post Graduate Programme		
Components	Marks	
I CA	15	
II CA	40	15
MCQ - 40 questions- offline/online -60 minutes	15	5
Seminar	15	5
Problem solving Session	$\mathbf{5 0}$	
Total		

Pattern of CA Question Paper (PG)

Section A	
Section B	
Answer ALL the Questions	$6 \times 2=12$ Marks
Section C	
Answer ALL Questions Either or Type	
Answer ANY TWO Questions	
Out of Three Questions	

Pattern of Semester Question Paper (PG)

Section A		
Section B	$10 \times 2=20$ Marks	
Answer ALL the Questions	$5 \times 7=35$ Marks	
Section C		
Answer ALL Questions Either or Type		
Answer ANY THREE Questions Out of FIVE Questions	$3 \times 15=45$ Marks	

Total Marks for Each Course is
Continuous Internal Assessment 50 Marks + End Semester Examination 50 Marks

$$
\text { Total = } 100 \text { Marks }
$$

Question paper Pattern for Skill Enhancement Courses:

Continuous Internal Assessment : 60 MCQ questions -Each question carries 1 marks (60 Marks Converted to 15 marks for CA Test Components)

End Semester Examination : 90 MCQ questions -Each question carries 1 marks (90 Marks Converted to 50 marks for End Semester Examinations)

PG \& Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur 635601

Programme structure for M.Sc., Mathematics under new CBCS with effect from 2021-2022

Sem	Course Code	Course Title	Type	Hrs/ Week	Credi ts	Marks		
						Int	SE	Total
I	M745	Abstract Algebra	MC	6	5	50	50	100
	M746	Real Analysis	MC	6	5	50	50	100
	M747	Ordinary Differential Equations	MC	6	5	50	50	100
	M748	Mathematical Statistics	MC	6	5	50	50	100
	$\begin{aligned} & \hline \text { M749A } \\ & \text { M749B } \\ & \text { M749C } \\ & \hline \end{aligned}$	A1. Differential Geometry A2. Skill Enhancement Course I - Algebra A3. Coding Theory	ME	6	3	50	50	100
	Total			30	23	250	250	500
II	M848	Advanced Linear Algebra	MC	6	5	50	50	100
	M849	Partial Differential Equations	MC	6	5	50	50	100
	M850	Advanced Graph Theory	MC	6	5	50	50	100
	M851	Classical Dynamics	MC	6	5	50	50	100
	M852A M852B M852C	B1. Mathematical Models in Biology B2. Skill Enhancement Course II - Linear Algebra B3. Numerical Analysis	ME	6	3	50	50	100
	Total			30	23	250	250	500
III	M953	Mathematical Analysis	MC	6	5	50	50	100
	M954	Topology	MC	6	5	50	50	100
	M955	Optimization Techniques	MC	6	5	50	50	100
	M956	Fluid Dynamics	MC	6	5	50	50	100
	M957A M957B M957C	C1. Nonlinear Dynamical Systems C2. Skill Enhancement Course III - Real Analysis C3. Mathematical Physics	ME	6	3	50	50	100
	Total			30	23	250	250	500
IV	M1049	Complex Function Theory	MC	6	5	50	50	100
	M1050	Functional Analysis	MC	6	5	50	50	100
	M1051	Difference Equations	MC	5	4	50	50	100
	$\begin{aligned} & \text { M1052A } \\ & \text { M1052B } \\ & \text { M1052C } \end{aligned}$	D1. Stochastic Processes D2. Skill Enhancement Course IV - Complex Analysis D3. Theory of Transforms	ME	5	3	50	50	100
	VE10XX	Human Rights		2	1	50	50	100
	M1053J	Project	MC	6	3	20	80	100
		Total		30	21	270	330	600
		Grand Total		120	$\begin{gathered} 90 \\ +10^{*} \\ \hline \end{gathered}$	1020	1080	2100

Semester	II	III	IV	Credits
Title of the Certificate Course	M8XXX - R Language for Statistics	M9XXX - LaTeX for Mathematics	M10XXX - Comprehensive Algebra	$2^{*}+2^{*}+2^{*}$
Title of Self Study Course	M8XXX - Formal Languages and Automata	-	-	$2 *$
MOOC Courses	MOOC Cours	are approved by Mathematics	Department of	Number of Credits awarded as per the recommendation of NPTEL
One Research Article Publication	Approved \quad by UGC/Thiruvalluvar University/Scopus/WOS /Anna University Annexure Journals			2^{*}

**Subject to the maximum of additional 10 credits
Additional Credits for various other Post graduate programmes
M9XXX - Mathematics for Competitive Examinations - I (IDC) : 2* Credits
M10XXX - Mathematics for Competitive Examinations - II (IDC) : 2* Credit.

Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S.No.	Level	Parameter	Description
1.	K1	Knowledge/Remembering	It is the ability to remember the previously learned.
2.	K2	Comprehension/Understanding	The learner explains ideas or concepts.
3.	K3	Application/Applying	The learner uses information in a new way.
4.	K4	Analysis/Analysing	The learner distinguishes among different
5.	K5	Evaluation/Evaluating	The learner justifies a stand or decision
6.	K6	Synthesis/Creating	The learner creates a new product or point of view.

Abstract

ALGEBRA

Objectives: To study the transformations, Extension Fields and algebraic extensions, Finite Fields and Sylow's theorems, Finite Simple groups, Symmetry groups and Cayley digraphs of groups and Galois Theory in Vector Space.

\section*{Unit - I: Extension Fields and Algebraic Extensions}

The Fundamental Theorem of Field Theory - Splitting Fields - Zeros of an Irreducible Polynomial - Characterization of Extensions - Finite Extensions - Properties of Algebraic Extensions. (Chapters 20, 21) Unit - II: Finite Fields and Class Equation Classification of Finite Fields - Structure of Finite Fields - Subfields of a Finite Field - Conjugacy Classes - The Class Equation - The Probability That Two Elements Commute. (Chapter 22, Chapter 24 (pages 395-397 only))

Unit - III: Sylow's Theorems and Finite Simple Groups
The Sylow's Theorems - Applications of Sylow's Theorems - Historical Background - NonSimplicity Tests - The Simplicity of A_{5}.
(Chapter 24 (pages 398-407 only), Chapter 25)
Unit - IV: Generators and Relations and Cayley Digraphs of Groups
Definitions and Notation - Free Group - Generators and Relations - The Cayley Digraph of a Group - Hamiltonian Circuits and Paths - Some Applications.
(Chapter 26 (pages 434-441 only), Chapter 30).
Unit - V: Galois Theory
Fundamental Theorem of Galois Theory - Solvability of Polynomials by Radicals - Insolvability of a Quintic.
(Chapter 32)

Book for Study

1. Joseph A. Gallian, Contemporary Abstract Algebra, $4^{\text {th }}$ Ed., Narosa, 1999.

Books for Reference

1. George E Andrews, Number Theory, Hindustan Publishing Corporation, 1984.
2. I. N. Herstein, Topics in Algebra, John Wiley and sons, 2-e, New Delhi, 2006.
3. John B. Fraleigh, A First Course in Abstract Algebra, 7-e, Pearson Education Publication, New Delhi 2003.
4. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
5. S. Arumugam and A. Thandapani, Modern Algebra, SciTech Publications Pvt. Ltd.
6. Saunders Maclane and Garrett Birkoff, Algebra, 2-e, Macmillan Publishing Co.inc, New York, 1979.
7. Serge Lang, Algebra, Addition Wesley Publishing Company, London 1965.
8. Surjeeth Singh and QuaziZameeruddin, Modern Algebra, 2-e, Vikas Publishing House Pvt. Ltd., New Delhi, 1975.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	prove theorems applying algebraic ways of thinking.	$\mathrm{K} 3, \mathrm{~K} 5$
CO 2	connect groups with graphs and understanding about Hamiltonian graphs.	K 4
CO 3	compose clear and accurate proofs using the concepts of Galois Theory.	K 6
CO 4	bringout insight into Abstract Algebra with focus on axiomatic theories.	K 1
CO 5	demonstrate knowledge and understanding of fundamental concepts including extension fields, Algebraic extension, Finite fields, Class equations and Sylow's theorem.	K 2

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)				Programme Specific Outcomes (PSO)				Mean Scores of		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
COs											

E-Learning source: https://cosmolearning.org/courses/abstract-algebra/

REAL ANALYSIS

Objective: To study the real number system, Functions of Bounded Variation and Rectifiable, Riemann-Stieltjes integral, Lebesgue Integral and Square Space.

Unit - I: Functions of Bounded Variation and Rectifiable Curves

Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on $[\mathrm{a}, \mathrm{b}]$ as a function of x - Functions of bounded variation expressed as the difference of increasing functions - Continuous functions of bounded variation - Curves and paths - Rectifiable paths and arc length - Additive and continuity properties of arc length - Equivalence of paths. Change of parameter. (Chapter: 6 Sec 6.2 to 6.12)

Unit - II: Riemann-Stieltjes integral

The definition of the Riemann-Stieltjes integral - Linear properties - Integration by parts - Change of variable in a Riemann-Stieltjes integral - Reduction to a Riemann integral - Step functions as integrators - Reduction of a Riemann-Stieltjes integral to a finite sum - Euler's summation formula - Monotonically increasing integrators - Upper and lower integrals - Additive and linearity properties of upper and lower integrals - Riemann's condition - Comparison theorems.
(Chapter 7: Sec 7.3 to 7.14)
Unit - III: Riemann-Stieltjes integral (contd.)
Integrators of bounded variation - Sufficient conditions for existence of Riemann-Stieltjes integrals - Necessary conditions for existence of Riemann-Stieltjes integrals - Mean Value Theorems for Riemann-Stieltjes integrals - The integral as a function of the interval - Second fundamental theorem of integral calculus - Change of variable in a Riemann integral - Second Mean-Value Theorem for Riemann integrals - Riemann-Stieltjes integrals depending on a parameter - Differentiation under the integral sign - Interchanging the order of integration. (Chapter: 7 Sec 7.15 to 7.25)

Unit - IV: Lebesgue Integral

The integral of a step function - Monotonic sequences of step functions - Upper functions and their integrals - Riemann-Integrable functions as examples of upper functions - The class of Lebesgue- Integrable functions on a general interval - Basic properties of the Lebesgue integral Lebesgue integration and sets of measure zero - The Levi monotone convergence theorems. (Chapter: 10 Sec 10.2 to 10.9)

Unit - V: Lebesgue Square Space

Lebesgue integrals on unbounded intervals as limits of integrals on bounded intervals - Improper Riemann integrals - Measurable functions - Continuity of functions defined by Lebesgue integrals - Differentiation under the integral sign - Inner products and norms - The set $L^{2}(I)$ of square-integrable functions - The set $L^{2}(I)$ as a semi-metric space - A convergence theorem for series of functions in $L^{2}(I)$ - The Riesz-Fischer theorem.
(Chapter 10: Sec 10.12 to $10.16,10.21$ to 10.25)

Book for Study

1. Tom M. Apostol, Mathematical Analysis, Indian student second edition, Narosa Publishing House, Chennai, 20 th reprint, 2002.

Books for Reference

1. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983.
2. P.N. Arora and Ranjit Singh, First course in Real Analysis, Third edition, Sultan Chand and Sons Publishers, New Delhi, 1981.
3. Richard R. Goldberg, Methods of Real Analysis, Oxford \& IBH Publishing Co. Pvt. Ltd, New Delhi, 1970.
4. Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis, by 2-e John Wiley and Sons, 2000.
5. S. Arumugam, Modern Analysis, New Gamma Publishers, Palayamkottai, 1993.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
$\mathrm{CO1}$	analyze and evaluate functions of bounded variation and Rectifiable Curves.	$\mathrm{K} 4, \mathrm{~K} 5$
CO 2	describe the concept of Riemann-Stieltjes integral and its properties.	K 1
CO 3	demonstrate the concept of step function, upper function, Lebesgue function and their integrals.	K 2
CO 4	construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.	K 3
CO 5	formulate the concept and properties of inner products, norms and measurable functions.	K 6

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	2	1	0	1	2	3	2	1	1.7
2	1	2	1	3	0	3	1	2	3	2	1.8
3	3	3	3	2	1	2	2	3	1	2	2.2
4	2	3	3	3	1	1	3	3	2	2	2.3
5	1	2	2	2	3	3	1	2	3	3	2.2
Mean Overall Score											2.04
Result											High

E-Learning source: https:// ocw.mit.edu/courses/mathematics/18-100a-introduction-to-analysis-fall-2012/

ORDINARY DIFFERENTIAL EQUATIONS

Objective: To study the Differential equation of higher order, to find the power series solution of special type of Differential equations, to solve the system of linear Differential equations, to study existence and uniqueness of the solutions, boundary value problems.

Unit- I: Linear Differential Equations of Higher order
Linear Dependence and Wronskian- Basic Theory for Linear Equations - Method of Variation of Parameters - Two Useful Formulae- Homogeneous Linear Equations with Constant Co-efficients. (Chapter 2, Sections: 2.2 to 2.6)

Unit - II: Solutions in Power Series

Introduction - Second Order Linear Equations with Ordinary Points - Legendre Equation and Legendre Polynomials - Second Order Equations with Regular Singular Points [up to example 3.9, Bessel function of first kind] - Bessel Equation.
(Chapter 3, Sections: 3.1 to 3.5)
Unit- III: Systems of Linear Differential Equations
Introduction - Systems of First Order Equations - Existence and Uniqueness Theorem Fundamental Matrix - Non-homogeneous Linear Systems - Linear Systems with Constant Coefficients.
(Chapter4, Sections: 4.1 to 4.6)

Unit- IV: Existence and Uniqueness of Solutions

Preliminaries - Successive Approximations - Picard's theorem - Non-uniqueness of Solutions Continuation and Dependence on Initial Conditions.
(Chapter5, Sections: 5.2 to 5.6)
Unit-V: Boundary Value Problems
Introduction - Sturm- Liouville Problem - Green's Functions.
(Chapter 7, Sections: 7.1 to 7.3)

Book for Study

1. S.G.Deoand V. Raghavendra, Ordinary Differential Equations and Stability theory, Tata McGraw Hill Publishing Company, New Delhi, 1980, Seventh Reprint 1993.

Books for Reference

1. D. Raj, D. P. Choudary and H. I. Freedan, A Course in Ordinary Differential Equations, Narosa Publishing House, Chennai, 2004.
2. D. Somasundaram, Ordinary Differential Equations, Narosa Publishing House, Chennai, 2002.
3. Ean A. Coddington, An Introduction to ODE, Prentice Hall of India Pvt., Ltd, New
4. Delhi. 1992
5. G. F. Simmons, Differential Equations, S. Chand and Company Ltd, New Delhi, 1974
6. M. D. Rasingania, Advanced Differential Equations, 4-e, Tata McGraw Hill Publishing Company, New Delhi, 1995.
7. M. Rana Mohan Rao, Ordinary Differential Equations Theory and Applications, Affiliate East West Press Private Ltd, Chennai, 1935.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	establish the qualitative behavior of solutions of systems of differential equations.	K 3
CO 2	recognize the physical phenomena modeled by differential equations and dynamical systems.	K 1
CO 3	analyze solutions using appropriate methods and give examples.	$\mathrm{K} 2, \mathrm{~K} 4$
CO 4	formulate Green's function for boundary value problems.	K 6
CO5	Understand and use various theoretical ideas and results that underlie the mathematics in this course.	K 5

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	2	2	3	3	3	2	2	2.6
2	2	3	2	2	2	2	3	3	1	2	2.2
3	2	3	3	1	2	3	3	3	2	3	2.5
4	1	2	2	3	1	2	2	3	3	2	2.1
5	3	2	2	2	2	3	2	2	2	3	2.3
Mean Overall Score											2.34
Result											High

E-Learning source: http:// nptel.ac.in/courses/111104031/
https://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/

MATHEMATICAL STATISTICS

Objective: To study and apply sampling theory, significance tests, estimation, testing of hypothesis and design of experiments.

Unit- I: Sampling and Sampling Distributions
Sampling - Sample mean - Sampling from the normal distributions.
(Book 1: Chapter 6, Sections: 6.2 to 6.4)
Unit- II: Parametric Point Estimation
Methods of finding Estimators - Properties of Point Estimators - Sufficiency - Unbiased estimation.
(Book 1: Chapter 7, Sections: 7.2 to 7.5)
Unit- III: Parametric Point and Interval Estimation
Baye's estimators - Confidence intervals - Sampling from the normal distribution - Methods of finding confidence intervals-Large sample confidence intervals - Bayesian Interval Estimates. (Book 1: Chapter 7, Section: 7.7; Chapter8, Sections: 8.2 to 8.6)

Unit-IV: Tests of Hypotheses
Test of hypotheses - Sampling from the normal distribution - Chi-square Tests -Test of Hypotheses and Confidence Intervals.
(Book 1: Chapter 9,Sections: 9.4 to 9.6)
Unit- V: Design of Experiments
Aim of the Design of experiments - Basic Principles of Experimental Design - Some Basic Designs of Experiments - Analysis of variance - Comparison of RBD and LSD - Examples. (Book 2:
Chapter 10: pages 10.1 to 10.25)

Books for Study

1. Alexander M. Mood, Franklin, A. Graybilland Duane C. Boes, Introduction to the Theory of Statistics, John Wiley and Sons, 3-e, 1974.
2. Veerarajan T, Probability, Statistics and Random Processes, $3^{\text {rd }}$ Edition - Tata McGrawHill, 2012.

Books for Reference

1. Ruma Falk, Understanding Probability and Statistics: A Book of Problems, A K Peters/CRC Press, 1997.
2. Marek Fisz, Probability and Mathematical statistics, Krieger Publishing Company; 3 edition, 1980.
3. Paul G. Hoel, Introduction to Mathematical Statistics, 5-e, Wiley, 1984.
4. Simmons and Schuster, Probability Statistics and Random Process, 1971.
5. S. P. Gupta \& M. P. Gupta, Business Statistics, $14^{\text {th }}$ enlarged edition, Sultan Chand and sons, educational publishers, New Delhi, reprint 2007.
6. S. S. Wilks, Mathematical Statistics, John Wiley and Sons, 1967.
7. Vijay K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics (Wiley Series in Probability and Statistics), Wiley-Blackwell, 1976.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	understand Sampling and Sampling distributions.	K2
CO2	illustrate the methods of finding Estimators	K2
CO3	determine Parametric point and Interval Estimation.	K3
CO4	perform hypothesis testing , justify hypothesis testing to Sampling problems and to determine confidence Intervals.	K3, K4, K6
CO5	define the basic terms used in design of experiments and use appropriate experimental designs to analyze the experimental data.	K1, K5

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	2	2	3	3	3	3	2	2.7
2	3	3	3	3	1	3	3	3	3	2	2.7
3	3	3	3	3	2	3	3	3	3	1	2.7
4	3	3	3	3	2	3	3	3	3	1	2.7
5	3	3	3	3	1	3	3	3	2	2	2.6
Mean Overall Score											2.68
Result											High

E-Learning source: https://ocw.mit.edu/courses/mathematics/18-655-mathematical-statistics-spring-2016/index.htm
http://www.math.uah.edu/stat/

DIFFERENTIAL GEOMETRY

Objective: This course introduces space curves and their intrinsic properties of a surface and geodesics. Further the non - intrinsic properties of surfaces are explored.

Unit - I: Space curves

Introductory remarks about Space Curves, Definitions - Arc Length - tangent -normal and binormal - curvature and torsion of a curve given as the intersection of two surfaces - contact between curves and surfaces - tangent surface, involutes and Evolutes - Intrinsic equations fundamental Existence Theorem for space curves- Helices.
(Chapter I, Sections: 1 to 9)
Unit - II: The metric: Local Intrinsic Properties of a Surface
Definition of a surface - curves on a surface- Surface of revolution - Helicoids - Metric Direction coefficients - Families of curves - Isometric correspondence - Intrinsic Properties. (Chapter II, Sections: 1 to 9)

Unit - III: Geodesics
Geodesics - Canonical geodesic equations - Normal Property of geodesics - Existence Theorems Geodesic parallels.
(Chapter II, Sections: 10 to 14)
Unit - IV: Geodesics (contd.)
Geodesics curvature - Gauss - Bonnet Theorem - Gaussian curvature - surface of constant curvature.
(Chapter II, Sections: 15 to 18)
Unit - V: The Second Fundamental form: Local non-intrinsic Properties of a Surface
The Second fundamental form - Principal Curvature - Lines of Curvature - DevelopablesDevelopables associated with space curves and with curves on surfaces - Minimal surfaces- Ruled surfaces.
(Chapter III, Sections: 1 to 8)

Book for Study

1. T.J. Wilmore, An introduction to Differential Geometry, Oxford University Press, (17 th Impression) New Delhi 2002. (Indian Print).

Books for Reference

1. D. Somasundaram, Differential Geometry, Narosa Publication House, Chennai, 2005.
2. J. A. Thorpe, Elementary topics in Differential Geometry, Under-Graduate Texts in Mathematics, Springer Verlag 1979.
3. Kobayashi. S. and Nomizu. K., Foundations of Differential Geometry, Interscience Publishers, 1963.
4. K. P. Gupta, G. S. Malik, Differential Geometry, 3-e, Pragati Prakasam, Meerut, India, 2005.
5. Struik, D. T., Lectures on Classical Differential Geometry, Addison - Wesley, Mass.1950.
6. Wilhelm Klingenberg, A course in Differential Geometry, Graduate Texts in Mathematics, Springer Verlag 1978.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	explain space curves, Curves between surfaces, metrics on a surface, fundamental form of a surface and Geodesics.	K2
CO 2	evaluate these concepts with related examples.	K 5
CO 3	compose problems on geodesics	K 6
CO 4	recognize applicability of developables	K 1
CO5	construct and analyze the problems on curvature and minimal surfaces	$\mathrm{K} 3, \mathrm{~K} 4$

Mapping of CO with PO and PSO

SSSSSSSSSSS

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { Scores } \\ \text { of } \\ \text { COs } \end{array}$
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	2	1	3	3	2	2	2	2.4
2	3	3	3	3	1	3	3	2	2	3	2.6
3	3	3	3	3	1	3	3	3	2	2	2.6
4	3	3	3	3	2	3	3	3	2	2	2.6
5	3	3	3	3	1	3	3	3	3	2	2.7
Mean Overall Score											2.58
Result											High

E-Learning source: http://www.math.ku.dk/noter/filer/geom1.pdf

SKILL ENHANCEMENT COURSE I - ALGEBRA

Objectives:

1. To develop broad and balanced knowledge and understanding of definitions, concepts, theorems and principles.
2. To enhance the ability of learners to apply the knowledge and skills acquired by them during the programme to solve specific theoretical and applied problem in Mathematics.
3. To empower students to crack competitive examinations such as NET, SET and TRB and to complement the theoretical content of the subject with exercise problems.

Unit-I: Finite Group
Introduction to groups - Groups - finite groups - subgroups.
(Chapters 1 to 3 - examples and exercise)
Unit-II: Cyclic and Permutation groups and Isomorphism
Cyclic groups - permutation groups - isomorphism.
(Chapters 4 to 6 - examples and exercise)
Unit-III: Cosets and Direct Products
Cosets and Lagrange's theorem - external direct products - normal subgroups and factor groups. (Chapters 7 to 9 - examples and exercise)

Unit-IV: Rings and Ideals

Introduction to rings - integral domains - ideals and factor rings.
(Chapters 12 to 14 - examples and exercise)
Unit-V: Ring Homomorphism and Factorization
Ring homomorphism - polynomial rings - factorization of polynomials.
(Chapters 15 to 17 - examples and exercise)

Book for Study

1. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.

Books for Reference

1. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
2. S. Arumugam and A. Thandapani, Modern Algebra, SciTech Publications Pvt. Ltd.
3. George E Andrews, Number Theory, Hindustan Publishing Corporation, 1984.
4. I.N. Herstein, Topics in Algebra, John Wiley and Sons, 2-e, New Delhi, 2006.
5. John B. Fraleigh, A First Course in Abstract Algebra, 7-e, Pearson Education Publication, New Delhi 2003.
6. Saunders Maclane and Garrett Birkoff, Algebra, 2-e, Macmillan Publishing Co.inc, New York, 1979.
7. Serge Lang, Algebra, Addition Wesley Publishing Company, London, 1965.
8. Surjeeth Singh and Quazi Zameeruddin, Modern Algebra, 2-e, Vikas Publishing House Pvt. Ltd., New Delhi, 1975.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	disseminate new and innovative knowledge that will make them fit for any competitions in job opportunities.	K 5
CO 2	apply new tangents or to exercise their knowledge and skill in other disciplines.	K 3
CO 3	develop, prioritize, demonstrate display, and disseminate newer versions and to interpret in novel ways.	$\mathrm{K} 4, \mathrm{~K} 6$
CO 4	bringout the flair for new and continuous learning process.	K 1
CO 5	build the dexterity.	K 3

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	3	3	2	3	3	2	3	3	2.7
2	2	3	3	3	2	3	3	2	3	3	2.7
3	2	3	3	3	2	3	3	2	3	2	2.6
4	2	3	3	3	2	3	3	2	3	2	2.6
5	2	3	3	3	2	3	3	2	3	3	2.7
Mean Overall Score											2.66
Result											High

E-Learning source: https://ocw.mit.edu/courses/mathematics/18-702-algebra-ii-spring-2011

Semester - I

Code: M749C (Elective)

Coding Theory

Objectives: To provide students with elementary knowledge of theory of error correcting codes and readable introduction to mathematical aspect of coding.

Unit 1:

Introduction to linear codes and error correcting codes. Encoding and decoding of a linear coe.

Unit 2:

Dual codes. Hamming codes and perfect codes.

Unit 3:

Cyclic codes. Codes with Latin Squares, Introduction to BCH codes.

Unit 4:

Weight enumerators and MDS codes.

Unit 5:

Linear coding theory problems and conclusions.

Books for Study

1. Raymond Hill, A first course in Coding Theory, Clarandon Press, Oxford (1986).
2. J.H. Van Lint, Introduction to Coding Theory, Springer (1998).

Books for Reference

1. W. Cary Huffman and Versa Pless, Fundamentals of Error Correcting Codes, Cambridge University Press (2003).
2. W.W. Peterson, Error Correcting Codes, Cambridge, MA MIT Press (1961).
3. V. Pless, W.C. Huffman and R.A. Brualdi, An Introduction to Algebraic Codes, in Hand book of coding theory, Eds. Amsterdam Elsevier (1998)

Course Learning Outcomes
This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	describe and justify the concept of linear codes and error correcting codes.	K1, K4
CO2	perform encoding and decoding using linear codes.	K6
CO3	construct and decode BCH code.	K 3
CO4	summarize different types of codes.	K 2
CO5	solve linear coding theory problems	K 3

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	3	1	3	3	3	1	2	2.5
2	3	3	3	3	1	3	3	3	1	1	2.4
3	3	3	3	3	1	3	3	3	1	2	2.4
4	3	3	3	2	1	3	3	3	1	2	2.4
5	3	3	3	3	2	3	3	3	1	2	2.3
Mean Overall Score											2.4
Result											High

E-Learning Sources: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-895-essential-coding-theory-fall-2004/

ADVANCED LINEAR ALGEBRA

Objective: To give the students a thorough knowledge of the various aspects of Linear Algebra. To train the students in problem-solving as a preparatory for competitive exam.

Unit - I: Linear transformations

The algebra of linear transformations- Isomorphism - Representations of Transformations by Matrices - Linear Functionals.
(Book - 1, Chapter 3, Sections: 3.2 to 3.5)

Unit - II: Algebras of Polynomials

Algebras - The algebra of polynomials - Lagrange-Interpolation - Polynomial Ideals - The Prime factorization of a polynomial.
(Book - 1, Chapter 4, Sections: 4.1 to 4.5)

Unit - III: Inner Product Spaces

Inner Products and Norms - The Gram - Schmidt Orthogonalization Process and Orthogonal Complements - The Adjoint of a Linear Operator - Normal and Self - Adjoint Operators.
(Book - 2, Chapter 6, Sections: 6.1 to 6.4)
Unit - IV: Orthogonal System
Unitary and Orthogonal Operators and their Matrices - Orthogonal Projections and the Spectral Theorem - Bilinear and quadratic forms.
(Book - 2, Chapter 6, Sections: 6.5, 6.6, 6.8)
Unit - V: Canonical Forms
Jordan Canonical form I - Jordan Canonical form II-The minimal polynomial.
(Book - 2, Chapter 7, Sections: 7.1 to 7.3)

Books for Study

1. Kenneth Hoffman and Ray Alden Kunze, Linear Algebra, Second Edition, Prentice Hall of India Private Limited, New Delhi, 2010.
2. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, Fourth Edition, Prentice Hall of India Private Limited, New Delhi, 2007.

Books for Reference

1. A. R. Rao, P. Bhimashankaram, Linear Algebra, Second Edition, Tata McGraw Hill, 2000.
2. Edgar G. Goodaire, Linear Algebra-Pure E Applied World Scientific, Cambridge University Press India Ltd, 2014.
3. I. N. Herstein, Topics in Algebra, 2-e, Vikas Publishing House Pvt., Ltd,Chennai-6, 2006.
4. P. P Gupta, S. K. Sharma, Linear Algebra, S.Chand and Company Ltd, New Delhi, 1982.
5. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice - Hall of India Ltd, 2004.
6. V. Krishnamurthy, V. P. Mainra, J. L. Arora, Introduction to Linear Algebra, East West Press Ltd, 1985.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	understand linear transformations and represent in matrix form.	K 2
CO 2	compute minimal polynomial and characteristic polynomial of linear transformation.	K 3
CO 3	find applicability of the inner product spaces.	K 5
CO 4	outline and formulate the theory of the course to solve variety of problems at an appropriate level of difficulty	$\mathrm{K} 4, \mathrm{~K} 6$
CO 5	examine bi-linear and Jordan canonical forms.	K 1

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					$\begin{gathered} \text { Mean } \\ \text { Scores } \\ \text { of } \\ \text { COs } \end{gathered}$
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	2	3	2	2	2	3	2	2	2.4
2	3	3	2	3	2	1	3	3	2	2	2.4
3	1	1	2	2	1	2	2	3	1	2	1.7
4	2	2	1	2	1	2	2	3	2	2	1.9
5	2	2	1	2	1	2	2	3	2	2	1.9
Mean Overall Score											2.06
Result											High

E -Learning Source: http://nptel.ac.in/courses/111106051/

PARTIAL DIFFERENTIAL EQUATIONS

Objective: To develop skills in solving partial differential equations.
Unit - I: Partial Differential Equations of First Order
Introduction - Formation of Partial Differential Equation - Solution of Partial Differential Equations of First Order - Charpit's Method.
(Chapter 0, Sections: 0.1, 0.4, 0.5, 0.11)

Unit - II: Fundamental Concepts

Introduction - Classification of second Order PDE - Canonical Forms
(Chapter 1, Sections: 1.1 to 1.3)

Unit - III: Elliptic Differential Equations

Occurrence of the Laplace and Poisson Equations - Boundary Value Problems - Separation of Variables - Dirichlet Problem for a Rectangle - The Neumann Problem for a Rectangle - Interior Dirichlet Problem for a Circle - Exterior Dirichlet Problem for a Circle - Interior Neumann Problem for a Circle.
(Chapter 2,Sections: 2.1, 2.2, 2.5 to 2.10)
Unit - IV: Parabolic Differential Equations
Occurrence of the Diffusion Equation - Boundary Conditions - Elementary Solutions of the Diffusion Equation - Dirac Delta Function - Separation of Variables Method.
(Chapter 3, Sections: 3.1 to 3.5, Omit Examples 3.2 and 3.3)

Unit - V: Hyperbolic Differential Equations

Occurrence of the Wave Equation - Derivation of One - dimensional Wave Equation - Solution of One - dimensional Wave equation by Canonical Reduction - The initial Value Problem; D'Alembert's Solution - Vibrating string - Variables Separable Solution - Forced Vibrations Solution of Non-homogeneous Equation.
(Chapter 4, Sections: 4.1 to 4.6).

Book for Study

1. K. Sankara Rao, Introduction to Partial Differential Equations, 2-e, New Delhi, 2006.

Books for Reference

1. Amarnath. T, An Elementary Course in Partial Equations, Narosa Publishing House, 1997.
2. M. D. Raisingania, Advanced Differential Equations, 4-e, Tata McGraw Hill Publishing Company, New Delhi, 2001.
3. L.C.Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol.19, AMS, 1998.
4. Erich Miersemann, Partial Differential Equations, Lecture Notes, Leipzig University Version October, 2012.
5. Snedon. I. N, Elements of Partial Differential Equations, Tata McGraw Hill, New Delhi, 1991.
6. P. Prasad and R. Ravindran, Partial differential equations, Wiley Eastern, 1985.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	recognize the major classification of PDEs and the qualitative differences between the classes of equations.	K 1
CO 2	demonstrate modeling assumptions and derivations that lead to PDEs.	K 2
CO 3	be crtically competent in solving linear PDEs using classical solution methods.	K 4
CO 4	Use knowledge of partial differential equations for modelling the general structure of solutions and using analytic methods for solutions.	K 6
CO 5	investigate and solve boundary values problems and point out its significance	$\mathrm{K} 3, \mathrm{~K} 5$

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	1	1	3	1	3	1	1	2
2	3	3	3	2	1	3	3	2	2	1	2.3
3	3	3	3	2	1	3	2	2	2	1	2.2
4	3	3	3	2	1	3	2	2	2	1	2.2
5	1	2	2	1	1	3	3	2	3	1	1.9
Mean Overall Score											2.12
Result											High

E-Learning source: https://ocw.mit.edu/courses/mathematics/18-156-differential-analysis-ii-partial-differential-equations-and-fourier-analysis
spring2016/index.htm?utm_source=OCWDept\&utm_medium=CarouselSm\&utm_campaign=Fea turedCourse

ADVANCED GRAPH THEORY

Objective: To understand the concept of graphs, sub graphs, trees, connectivity, Euler tour, Hamilton cycle, matching, colouring of graphs, independent set, cliques, vertex colouring and planar graphs.

Unit - I: Graphs and Sub graphs

Graphs and simple graphs - Graph isomorphism - The Incidence and Adjacency matrices - Sub graphs - Vertex degrees - Paths and connection - Cycles - The shortest path problem. (Chapter 1, Sections: 1.1 to 1.8)

Unit - II: Trees and Connectivity
Trees - Cut edges and Bonds - Cut vertices - Cayley's formula - The connector problem Connectivity - Blocks.
(Chapter 2,Sections: 2.1 to 2.5 and Chapter 3, Sections: 3.1 to 3.2).

Unit - III: Euler Tours and Hamilton Cycles
Euler tour - Hamilton cycles - The Chinese postman problem - The traveling salesman problem.
(Chapter 4, Sections: 4.1 to 4.4)
Unit - IV: Matching, Independent Sets and Cliques
Matchings - Matchings and coverings in bipartite graphs - Perfect matchings - The personal assignment problem - The optimal assignment problem - Independent sets.
(Chapter 5, Sections: 5.1 to 5.5 and Chapter 7, Section: 7.1)

Unit - V: Vertex Colouring and Planar Graphs

Chromatic number - Brook's theorem - Chromatic polynomials - Plane and planar graphs - Dual graphs - Euler's formula - The five colour theorem and the four colour conjecture. (Chapter 8, Sections: 8.1, 8.2, 8.4 and Chapter 9, Sections: 9.1 to 9.3, 9.6)

Book for Study

1. J.A. Bondy \& U.S.R. Murty, Graph theory with application, Macmillan press, 2011.

Books for Reference

1. K. R. Parthasarthy, Basic graph theory, Tata McGraw Hill Company, New Delhi, 1994.
2. P. Harray, Graph theory, Narosa Publishing House, New Delhi, 1998.
3. S. Arumugam \& S. Ramachandran, Invitation to graph theory, SciTech publishing company, 2004.
4. V. K. Balakrishnan, Graph theory, Tata McGraw Hill Company, New Delhi, 2004.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	understand basic concepts in Graph theory .	K 2
CO 2	apply the understanding and use it to model real life situations.	K 3
CO 3	apply the concepts of connectivity, Euler and Hamilton cycles in the real life situations.	K 4
CO 4	identify and develop the applications of planarity and colourability.	$\mathrm{K} 1, \mathrm{~K} 6$
CO 5	create graph models in network and computing	K 5

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	P01	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	2	2	2	3	2	2	0	1	2
2	3	3	2	2	2	3	3	2	0	1	2.1
3	2	3	2	2	2	3	3	3	0	1	2.1
4	3	3	2	2	2	3	3	3	1	1	2.3
5	3	3	2	2	2	3	3	2	1	1	2.2
Mean Overall Score											2.14
Result											High

E - Learning source: http://cs.bme.hu/fcs/graphtheory.pdf

CLASSICAL DYNAMICS

Objective: To study mechanical systems under generalized coordinate, virtual work, energy and momentum, also to study the mechanics developed by Newton, Lagrange, Hamilton and Jacobi.

Unit - I: Mechanical Systems

The mechanical system - Generalized co-ordinates - Configuration space - Constraints - Virtual work - Principle of virtual work - D'Alembert's Principle - Generalized force - Energy Momentum.
(Chapter 1, Sections: 1.1 to 1.5)
Unit - II: Lagrange's Equations
Derivation of Lagrange's equations - Examples - Integrals of the motion - Ignorable coordinates - The Routhian function - Conservative systems - Natural systems.
(Chapter 2, Sections: 2.1 to 2.3)
Unit - III: Hamilton's Equation
Hamilton's principle - Derivation of Hamilton's equations - The Legendre transformationModified Hamilton's principle - Principle of least action.
(Chapter 4, Sections: 4.1 to 4.3)
Unit - IV: Hamilton Jacobi Theory
Hamilton's principal function - Pfaffian differential forms - The Hamilton-Jacobi equation Jacobi's theorem - Separability.
(Chapter 5, Sections: 5.1 to 5.3)

Unit - V: Canonical Transformation

Differential forms and generating functions - Special Transformations - Lagrange and Poisson brackets.
(Chapter 6, Sections: 6.1 to 6.3)

Book for Study

1. Donald T. Greenwood, Classical Dynamics, Prentice Hall of India Pvt. Ltd., New Delhi, 1985.

Books for Reference

1. D. E. Rutherford, Classical Mechanics, Oliver Boyd, New York, 2000.
2. H. Goldstein, Classical Mechanics, Second edition, Narosa Publishing House, New Delhi, 1994.
3. J. L. Synge and B. A Grifth, Principles of Mechanics, 3e, McGraw Hill Book Company, New York, 1959.
4. J. L. Synge and P. S. C. Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 1991.
5. P. G. Bergmann, Introduction to Theory of Relativity, Prentice Hall of India, Eddington, New Delhi, 1969.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO1	demonstrate the knowledge of core principles in mechanics	K 2
CO 2	interpret and consider complex problems of classical dynamics in a systematic way	$\mathrm{K} 3, \mathrm{~K} 5$
CO 3	apply the variation principle for real physical situations	K 4
CO 4	explore different applications of these concepts in the mechanical and electromagnetic fields.	K 6
CO 5	describe and apply the concept of Angular momentum, Kinetic energy and Moment of inertia of a particle.	K 1

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	2	2	2	1	3	3	3	2	1	2.2
2	3	2	2	2	1	3	3	3	2	1	2.2
3	3	3	3	2	1	2	2	3	2	1	2.2
4	3	3	2	2	1	3	3	3	2	1	2.3
5	3	3	2	2	1	3	3	2	2	1	2.2
Mean Overall Score											2.22
Result											High

E-Learningsource: https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/

Hours/Week: 6
Credits: 3

MATHEMATICAL MODELS IN BIOLOGY

Objective: This Course aims to explore the potential of Mathematical Modeling among the Students and in emphasizing the role of Mathematical Models in Biology and Medicine.

Unit - I: Microbial Population Models
Importance of Microbial Kinetics - Microbial Growth in a Chemostat - Stability of Steady States for Chemostat - Growth of Microbial Populations - Product formation due to Microbial Action.
(Chapter 2, Sections: 2.1-2.5)
Unit - II: Single-Species Non-Age Structured Population Models
Simple Logistic Models: The Logistic Equation - Physical Basis of Logistic Model - Smith's Model - Generalized Logistic Models - Difference Equation for Logistic Model - Logistic Model for a Non- isolated Population - Logistic Models with Time-Delay Effects: Derivation of the Logistic Equation with Time Delay - Biological Mechanisms Responsible for Time Lags - Solution of the Basic Equation in Two Special Cases.
(Chapter 3, Sections: 3.1, 3.2 (3.2.1-3.2.3))

Unit - III: Two-Species Population Models

A Simple Prey-predator Model: Basic Equations for a Simple Prey-Predator Model - The Trajectories - Stability of Equilibrium Positions - Time Averages over a Period - Numerical Illustrations - Some Other Prey-Predator Models: Secular Equation for Determining Stability - A General Prey-predator Model - Predator Not-dependent-on-prey-alone Model.
(Chapter 5, Sections: 5.1, 5.2 (5.2.1-5.2.3))

Unit - IV: Multi-Species Population Models

Volterra's Model for n Interacting Species: The Basic System of Equations - Existence of Constant of Motion - Stability of Equilibrium Position - Long-time Averages of Powers and Products of Species Populations - Particular Case of Two Species - Statistical Mechanical Treatment of Voterra's Equations: Liouville's Theorem - Time Averages and Ensemble Averages - Ensemble Averages of Population Sizes of Different Species.
(Chapter 6, Sections: 6.1 (6.1.1-6.1.5), 6.2 (6.2.1-6.2.3))

Unit - V: Mathematical Models in Pharmacokinetics

Basic Equations and Their Solutions: Compartments - Basic Equations for an n-Compartment System - Solution of the System for a Given Initial Injection - Solution of the system for Repeated Medication -Solution for constant rate of Infusion - Solution for Truncated Infusion - Solutions for Special Cases: Special Case of a Single Compartment - An Example of Two Compartments: Clinical Bromsulphalein Test - A Second Example of a Two-compartment System: Repeated Pencillin Application - Compartment Model for Diabetes Mellitus.
(Chapter 10, Sections: 10.1, 10.2)

Book for Study

1. J.N. Kapur, Mathematical Models in Biology \& Medicine, East West Press, New Delhi, Reprint 2010.

Books for Reference

1. C. Dyson, Elvery, Principles of Mathematical Modelling, Academic Press, New York.
2. D. J. G. James and J. J. Macdonald, Case studies in Mathematical Modelling, Stanly Thames, Cheltonham.
3. J. D. Murray, Mathematical Biology, Springer International Edition, First Indian Reprint, 2004.
4. M. Cross and A. O. Moscrcadini, The Art of Mathematical Modelling, Ellis Harwood and John Wiley.
5. Nicholas F. Britton, Essential Mathematical Biology, Springer International Edition, First Indian Reprint, 2004.
6. Pundir - Pundir, Bio Mathematics, A Pragati Edition, 2006.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	describe standard modeling procedures, which involve observations of a natural system, the development of a numeric and or/analytical model.	K 1
CO 2	analyze the model through analytical and graphical solutions and/or statistical analysis.	K 4
CO 3	distinguish between two species and multi species models.	K 2
CO 4	formulate stochastic and deterministic models.	K 6
CO 5	construct and evaluate concrete examples in pharmacokinetics	$\mathrm{K} 3, \mathrm{~K} 5$

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	3	3	2	3	2	3	1	2	2.4
2	3	3	3	2	2	3	3	3	1	2	2.5
3	3	3	3	2	1	3	3	3	1	2	2.4
4	3	3	3	2	2	3	3	3	1	1	2.4
5	3	3	3	2	1	3	3	3	1	2	2.4
Mean Overall Score											2.42
Result											High

E-Learning sources: www.cimpa-icpam.org/ecoles-de.../ecoles.../
https://en.wikipedia.org/wiki/Modelling_biological_systemswww.math.nthu.edu.tw/~sbhsu/ Biologial\%20Science.pdf

SKILL ENHANCEMENT COURSE II - LINEAR ALGEBRA

Objectives:

1. To develop broad and balanced knowledge and understanding of definitions, concepts, theorems and principles.
2. To enhance the ability of learners to apply the knowledge and skills acquired by them during the programme to solve specific theoretical and applied problem in Mathematics.
3. Toempower students to crack competitive examinations such as NET, SET and TRB and to complement the theoretical content of the subject with exercise problems.

Unit - I: Linear Transformations and Matrices

Linear transformations - null spaces - ranges - matrix representation of a linear transformation composition of linear transformations - matrix multiplication - invertibility - isomorphism change of coordinate matrix - dual spaces.
(Chapter 2; Sections 2.1 to 2.6 - examples and exercise)
Unit - II: Elementary Matrix Operations and Systems of Linear Equations
Elementary matrix operations - elementary matrices - rank of a matrix - matrix inverses - system of linear equations.
(Chapter 3; Sections 3.1 to 3.4 - examples and exercise)

Unit - III: Diagonalization

Eigen values and Eigen vectors - diagonalizability - invariant subspaces and the CayleyHamilton Theorem.
(Chapter 5; Sections 5.1, 5.2, 5.4 - examples and exercise)

Unit - IV: Inner Product Spaces

Inner products and norms - Gram-Schmidt orthogonalization process - orthogonal complements - adjoint of a linear operator.
(Chapter 6; Sections 6.1 to 6.3 - examples and exercise)

Unit - V: Linear Operator on Inner Product Spaces

Normal, self-adjoint operators - unitary and orthogonal operators - orthogonal projections spectral theorem.
(Chapter 6; Sections 6.4 to 6.6 - examples and exercise)

Book for Study

1. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, Fourth Edition, Prentice Hall of India, New Delhi, 2007.

Books for Reference

1. David C. Lay, Linear Algebra and its Applications, $3^{\text {rd }}$ Ed., Pearson Education Asia, Indian Reprint, 2007.
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
3. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
4. I.N. Herstein, Topics in Algebra, John Wiley and sons, 2-e, New Delhi, 2006.
5. S. Arumugam and A.Thandapani, Modern Algebra, SciTech Publications Pvt. Ltd.
6. John B. Fraleigh, A First Course in Abstract Algebra, 7-e, Pearson Education Publication, New Delhi 2003.
7. Saunders Maclane and Garrett Birkoff, Algebra, 2-e, Macmillan Publishing Co.inc, New York, 1979.
8. Santiago, Modern Algebra, Arul Publications, Madras, 1988.
9. Serge Lang, Algebra, Addition Wesley Publishing Company, London 1965.
10. Surjeeth Singh and Quazi Zameeruddin, Modern Algebra 2-e, Vikas Publishing House Pvt. Ltd., New Delhi, 1975.

Course Learning Outcomes

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
$\mathrm{CO1}$	disseminate new and innovative knowledge that will make them fit for any competitions in job opportunities.	K 5
CO 2	analyze new tangents or to exercise their knowledge and skill in their own disciplines.	K 4
CO 3	develop, give examples, demonstrate display, and disseminate newer versions and to interpret in novel ways.	$\mathrm{K} 2, \mathrm{~K} 6$
CO 4	bringout the flair for new and continuous learning process.	K 1
CO 5	build the dexterity.	K 3

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)					Mean Scores of COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	3	3	1	3	3	2	3	2	2.5
2	2	3	3	2	2	3	3	3	3	2	2.6
3	2	3	2	3	2	3	3	2	3	2	2.6
4	2	3	3	2	2	3	3	2	3	2	2.5
5	2	3	3	2	2	3	3	2	3	2	2.5
Mean Overall Score											2.54
Result											High

E - Learning source: https://www.math.ku.edu/~lerner/LAnotes/LAnotes.pdf

```
Semester - II

\section*{Numerical Analysis}

Objective: To provide the student an understanding of the basic principles of numerical methods and to apply them in solving algebraic equations and ordinary differential equations numerically; To introduce various difference operators to enable the students to apply them in interpolation and numerical differentiation and integration.

Unit - I: Transcendental and Polynomial Equations
Introduction - Bisection method - Iteration methods based on first degree equation - Iteration methods based on second degree equation - Polynomial equations - Methods for complex roots.
(Chapter 2: Sections 2.1-2.4, 2.8-2.9)
Unit - II: System of Linear Algebraic Equations and Eigenvalue Problems
Introduction - Direct methods - Iteration methods - Eigen values and Eigen vectors - Model problems.
(Chapter 3: Sections 3.1 - 3.2, 3.4-3.6)

\section*{Unit - III: Interpolation and Approximation}

Introduction - Lagrange and Newton Interpolations - Finite difference operators - Interpolating polynomials using finite differences - Hermite interpolation - Piecewise and spline interpolation.
(Chapter 4: Sections 4.1-4.6)

\section*{Unit - IV: Differentiation and Integration}

Introduction - Numerical Differentiation - Extrapolation methods - Partial Differentiation Numerical integration - Methods based on interpolation - Composite integration methods Romberg Integration.
(Chapter 5: Sections 5.1, 5.2, 5.4-5.7, 5.9-5.10)
Unit - V: Ordinary Differential Equations
Introduction - Numerical methods - Single step methods, Multi step methods.
(Chapter 6: Sections 6.1-6.4)

\section*{Book for Study}
1. M.K.Jain, S.R.K. Iyengar and R.K.Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publishers 2007, Fifth Edition.

\section*{Books for Reference}
1. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Addison Wesley Hill Fifth Edition, 2008.
2. Samuel D Conte and Carl de Boor, Elementary Numerical Analysis, Tata MacGraw Hill Pvt. Ltd Stall, New Delhi Third Edition, 1980.

\section*{Course Learning Outcomes}

This course will enable the students to:
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
Understand the need for numerical methods in real life \\
situations.
\end{tabular} & K2 \\
\hline CO2 & \begin{tabular}{l} 
Apply the methods to solve problems and find the size \\
errors in each method.
\end{tabular} & K 3 \\
\hline CO 3 & \begin{tabular}{l} 
critically analyse the accuracy of each method in solving \\
algebraic, transcendental system of equations.
\end{tabular} & K 4 \\
\hline CO 4 & \begin{tabular}{l} 
identify and implement numerical methods in various \\
physical problems and find its efficacy in real life.
\end{tabular} & \(\mathrm{K} 1, \mathrm{~K} 5\) \\
\hline CO 5 & \begin{tabular}{l} 
develop and demonstrate the theoretical and practical aspects of \\
numerical methods.
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 6\) \\
\hline
\end{tabular}

Mapping of CO with PO and PSO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 2 & 3 & 3 & 2 & 2 & 2 & 3 & 3 & 2 & 2 & 2.4 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 3 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2 & 2.5 \\
\hline 4 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 1 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.58 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

\section*{E-Learning source:}
https://ocw.mit.edu/courses/mathematics/18-330-introduction-to-numerical-analysis-spring-2012/download-course-materials/

\section*{Certificate Course- Comprehensive Algebra}

Code: M8XX
Hours : 30/Sem
Year/Semester: I / II
Credits: 2*

Objective: To empower students to crack competitive examinations such as NET, SET and TRB and to complement the theoretical content of the subjects with exercise problems.

Unit-I
Vector spaces - Extension fields.
(Chapter 19 and 20 - examples and exercise)

\section*{Unit-II}

Algebraic extensions - Finite fields.
(Chapter 21 and 22 - examples and exercise)
Unit-III
Sylow theorems - Finite simple groups.
(Chapter 24 and 25 - examples and exercise)

\section*{Unit-IV}

Generators - Relations.
(Chapter 26 - examples and exercise)

\section*{Unit-V}

Symmetry groups - Introduction to Galois Theory.
(Chapter 27 and 32 - examples and exercise)

\section*{Book for Study}
1. Joseph A. Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.

\section*{Books for Reference}
1. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.
2. S.Arumugam and A.Thandapani, Modern Algebra, SciTech Publications Pvt. Ltd.
3. George E Andrews, Number Theory, Hindustan Publishing Corporation, 1984.
4. I.N. Herstein, Topics in Algebra, John Wiley and sons, 2-e, New Delhi, 2006.
5. John B. Fraleigh, A First Course in Abstract Algebra, 7-e, Pearson Education Publication, New Delhi 2003.
6. Saunders Maclane and Garrett Birkoff, Algebra, 2-e, Macmillan Publishing Co.inc, New York, 1979.
7. Serge Lang, Algebra, Addition Wesley Publishing Company, London 1965.
8. Surjeeth Singh and Quazi Zameeruddin, Modern Algebra, 2-e, Vikas Publishing House Pvt., Ltd., New Delhi, 1975.

\section*{Course Learning Outcomes}

This course will enable the students to:
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & prove theorems applying algebraic ways of thinking. & \(\mathrm{K} 3, \mathrm{~K} 5\) \\
\hline CO 2 & \begin{tabular}{l} 
analyze new tangents or to exercise their knowledge and \\
skill in their own disciplines.
\end{tabular} & K 4 \\
\hline CO 3 & \begin{tabular}{l} 
compose clear and accurate proofs using the concepts of \\
Galois Theory.
\end{tabular} & K 6 \\
\hline CO 4 & \begin{tabular}{l} 
bringout insight into Abstract Algebra with focus on \\
axiomatic theories.
\end{tabular} & K 1 \\
\hline CO 5 & \begin{tabular}{l} 
demonstrate knowledge and understanding of \\
fundamental concepts including extension fields, \\
Algebraic extension, Finite fields, Class equations and \\
Sylow's theorem.
\end{tabular} & K 2 \\
\hline
\end{tabular}

E -Learning source: https://ocw.mit.edu/courses/mathematics/18-702-algebra-ii-spring-2011

\section*{Certificate Course - R Language for Statistics}

Code: M8XX
Year/Semester: I / II

Hours: 30/Sem
Credits: 2*

Objective: To introduce to the students the novel applications of \(R\) language and to give them a hands on experience of working with data.

Unit - I: Basic Concepts in R
Assignment of values, Character, Vector arithmetic, Understanding Data types, importing/exporting data - Computation of tables and graphical representation in R: plot, pie chart, box plot, generating graphs from imported data

Unit - II: Probability Distributions
Fitting and plotting of binomial, Poisson and Normal distributions
Unit - III: Correlation and Regression
Correlation and linear regression: Representation of bivariate data through scatter diagram, Karl Pearson's, Spearman's and Kendall's coefficients of correlation, Coefficient of determination, linear regression model, Multiple Linear Regression.

Unit - IV: Tests of Hypothesis
Student's t test, One sample Z - test, Paired data t - test
Unit - V: Chi-square test and Design of Experiments
Chi-square test: Independence of attributes and goodness of fit - Design of Experiments: Completely randomized design (CRD), Randomized block design (RBD) and Latin square design (LSD).

\section*{Book for Study}
1. Joseph Adler, R in a Nutshell A Desktop Quick Reference, O'reilly, 2010.

\section*{Book for Reference}
1. Mark Gardener, Beginning \(R\) the Statistical Programming Language, John Wiley \& Sons, Inc. 2012.

\section*{Course Learning Outcomes}

This course will enable the students to:
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
explain practical implications of expectation and variance \\
and how they predict the shapes of distribution and \\
density (mass) functions of a random variable
\end{tabular} & K 5 \\
\hline CO 2 & \begin{tabular}{l} 
demonstrate capability to write programming codes for \\
plotting different distributions.
\end{tabular} & K 4 \\
\hline CO 3 & \begin{tabular}{l} 
evaluate the independence of attributes and design of \\
experiments.
\end{tabular} & K 6 \\
\hline CO 4 & \begin{tabular}{l} 
describe and apply probability distribution function and \\
different types of distributive functions through R \\
Language.
\end{tabular} & K 1 \\
\hline CO 5 & \begin{tabular}{l} 
know and understand about Tests of Hypothesis through \\
R.
\end{tabular} & K 2 \\
\hline
\end{tabular}

E - Learning source: https://www.r-project.org/
https://www.r-statistics.com/
http://www.r-tutor.com/elementary-statistics

Code: M8XX

\section*{Hours:}

Year/Semester: I / II
Credits: \(\mathbf{1}^{*}\)
Objective: To obtain knowledge about finite automata, regular expressions and regular grammars, properties of context free languages

\section*{Unit - I}

Phrase - Structure Languages.
(Chapter - 2)

\section*{Unit - II}

Closure Operations.
(Chapter - 3)
Unit - III
Context - Free Languages.
(Chapter - 4)
Unit - IV
Finite State Automata.
(Chapter - 5)

\section*{Unit - V}

Pushdown Automata.
(Chapter - 6)

\section*{Book for Study}
1. Dr. Rani Siromoney, Formal Languages and Automata, The Christian Literature Society, Madras, 1984.

\section*{Books for Reference}
1. D. Goswami and K. V. Krishna, Formal Languages and Automata Theory, November 5, 2010.
2. Shyamalendu Kandar, Introduction to Automata Theory, Formal Languages and Computation, Pearson Education India; First edition, 2013.
3. C.K. Nagpal, Formal Languages and Automata Theory, Oxford, 7 April 2011.

\section*{Course Learning Outcomes}

This course will enable the students to:
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
understand basic concepts in Lattices, formal language \\
and automata theory
\end{tabular} & K2 \\
\hline CO2 & \begin{tabular}{l} 
demonstrate abstract models of computing, including \\
deterministic (DFA), non-deterministic (NFA), Push \\
Down Automata(PDA)
\end{tabular} & K3 \\
\hline CO3 & relate practical problems to languages and automata & K4 \\
\hline CO4 & \begin{tabular}{l} 
design grammars and recognizers for different formal \\
languages
\end{tabular} & K5 \\
\hline CO5 & \begin{tabular}{l} 
Identify and formalate the structure of a given formal \\
language using regular expressions and context - free \\
grammars
\end{tabular} & K1, K6 \\
\hline
\end{tabular}
> To know about finite automata, regular expressions and regular grammars,
\(>\) To know and understand about properties of context free languages.
E-Learning source: http://nptel.ac.in/courses/111103016/
https://www.iitg.ernet.in/dgoswami/Flat-Notes.pdf

\section*{MATHEMATICAL ANALYSIS}

Objective: To study and analyze the real number system, Fourier series, Fourier Integral, multivariable calculus, Cauchy Theorem and Residue Calculus.

\section*{Unit - I: Fourier series}

Introduction - Orthogonal systems of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of the Fourier coefficients - The Riesz-Fischer theorem - The convergence and representation problems for trigonometric series The Riemann-Lebesgue lemma - The Dirichlet integrals - An integral representation for the partial sums of a Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point.
(Chapter 11, Sections: 11.1-11.12)

\section*{Unit - II: Fourier Integral}

Cesaro summability of Fourier series - Consequences of Fejer's theorem - The Weierstrass approximation theorem - Other forms of Fourier series - The Fourier integral theorem - The exponential form of the Fourier integral theorem - Integral transforms - Convolutions - The convolution theorem for Fourier transforms - The Poisson summation formula.
(Chapter 11, Sections: 11.13-11.22)

\section*{Unit - III: Multivariable Differential Calculus}

Introduction - The directional derivative -Directional derivatives and continuity -The total derivative - The total derivative expressed in terms of partial derivatives -An application to the complex valued functions-The matrix of a linear function -The Jacobian matrix -The chain rule Matrix form of the chain rule -The Mean-Value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives Taylor's formula for functions from \(\mathrm{R}^{\mathrm{n}}\) to \(\mathrm{R}^{1}\).
(Chapter 12, Sections: 12.1-12.14)

\section*{Unit - IV: Cauchy Theorem}

Analytic functions - Paths and curves in the complex plane - Contour integrals - The integral along a circular path as a function of the radius - Cauchy's integral theorem for a circle - Homotopic curves - Invariance of contour integrals under homotopy - General form of Cauchy's integral theorem - Cauchy's integral formula - The winding number of a circuit with respect to a point The unboundedness of the set of points with winding number zero - Analytic functions defined by contour integrals - Power-series expansions for analytic functions - Cauchy's inequalities. Liouville's theorem - Isolation of the zeros of an analytic function.
(Chapter 16, Sections: 16.1-16.15)

Unit - V: Residue Calculus

The identity theorem for analytic functions - The maximum and minimum modulus of an analytic function - The open mapping theorem - Laurent expansions for functions analytic in an annulus Isolated singularities - The residue of a function at an isolated singular point - The Cauchy residue theorem - Counting zeros and poles in a region - Evaluation of real-valued integrals by means of residues - Evaluation of Gauss's sum by residue calculus - Application of the residue theorem to the inversion formula for Laplace transforms - Conformal mappings.
(Chapter 16, Sections: 16.16-16.27)

\section*{Book for Study}
1. Tom M. Apostol, Mathematical Analysis, Indian student second edition, Narosa Publishing House, Chennai, \(20^{\text {th }}\) reprint 2002.

\section*{Books for Reference}
1. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983.
2. P. N. Arora and Ranjit Singh, First course in Real Analysis, Third edition, Sultan Chand and Sons Publishers, New Delhi, 1981.
3. Richard R. Goldberg, Methods of Real Analysis, Oxford \& IBH Publishing Co. Pvt. Ltd, New Delhi, 1970.
4. Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis, 2-e John Wiley and Sons, 2000.
5. S. Arumugam, Modern Analysis, New Gamma Publishers, Palayamkottai, 1993.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
understand and describe the basic concepts of Fourier \\
series and Fourier integrals with respect to orthogonal \\
system.
\end{tabular} & \(\mathrm{K} 1, \mathrm{~K} 2\) \\
\hline CO 2 & \begin{tabular}{l} 
analyze the representation and convergence problems of \\
Fourier series.
\end{tabular} & K 4 \\
\hline CO 3 & \begin{tabular}{l} 
analyze and evaluate the differences between transforms \\
of various functions
\end{tabular} & \(\mathrm{K} 4, \mathrm{~K} 5\) \\
\hline CO 4 & \begin{tabular}{l} 
formulate and evaluate complex contour integrals directly \\
and by the fundamental theorem.
\end{tabular} & \(\mathrm{K} 5, \mathrm{~K} 6\) \\
\hline CO 5 & \begin{tabular}{l} 
apply the Cauchy integral theorem in its various versions \\
to compute contour integration.
\end{tabular} & K 3 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|c|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Mean \\
Scores \\
of \\
COs \\
\hline 28
\end{tabular}} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 3 & 2 & 2.8 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 3 & 2 & 2.8 \\
\hline 3 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 3 & 1 & 2.7 \\
\hline 4 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 3 & 1 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 2 & 3 & 1 & 2.5 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.68 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: https://ocw.mit.edu/courses/mathematics/18-100b-analysis-i-fall-2010/

Objective: To develop student's topological and proof writing skills which are essential in the study of advanced mathematics, understand the concepts of topological spaces, analyze and synthesize proofs, understanding the concepts of connectedness and compactness.

Unit - I: Topological Spaces
Topological Spaces -Basis for a Topology-The Order Topology-The Product Topology on X \(\times \mathrm{Y}-\) The Subspace Topology - Closed Sets and Limit Points.
(Chapter 2,Sections: 12-17)
Unit - II: Continuous Functions and Metric Topology
Continuous Functions - The Product Topology - The Metric Topology.
(Chapter 2, Sections: 18-21)
Unit - III: Compactness

Compact Spaces - Compact Subspaces of the Real Line - Limit Point Compactness - Local Compactness.
(Chapter 3, Sections: 26-29)
Unit - IV:Countability and Separation Axioms
The Countability Axioms - The Separation Axioms - Normal Spaces - The Urysohn Lemma - The Urysohn Metrization Theorem - The Tietze Extension Theorem.
(Chapter 4, Sections: 30-35)

\section*{Unit - V: Metrization Theorems and Paracompactness}

Local Finiteness - The Nagata-Smirnov Metrization Theorem - Paracompactness - The Smirnov Metrization Theorem.
(Chapter 6: Sections 39-42)
Book for Study
1. James R. Munkres, Topology, 2-e, Prentice Hall of India Private Limited, New Delhi, 2003.

\section*{Books for Reference}
1. J. Dugundji, (1975), Topology, Prentice Hall of India, New Delhi.
2. George F. Simmons, (1963), Introductions to Topology and Modern Analysis, McGraw Hill.
3. J.L. Kelly, General Topology, Van Nostrand, Reinhold Co, New York.
4. L. Sten and J. Subash, Holt, Rinehart and Winston, Counter Examples in Topology.
5. S. Willard,(1970), General Topology, Addison Wesley Mass.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
define and illustrate the concept of topological \\
spaces and the basic definitions of open sets, \\
neighbourhood, interior, exterior, closure and their \\
axioms for defining topological space.
\end{tabular} & \(\mathrm{K} 1, \mathrm{~K} 2\) \\
\hline CO 2 & \begin{tabular}{l} 
Understand continuity, compactness, \\
connectedness, homeomorphism and topological \\
properties.
\end{tabular} & K 2 \\
\hline CO 3 & \begin{tabular}{l} 
analyze and apply the topological concepts in \\
Functional Analysis.
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 4\) \\
\hline CO 4 & \begin{tabular}{l} 
Ability to determine that a given point in a \\
topological space is either a limit point or not for a \\
given subset of a topological space.
\end{tabular} & K 5 \\
\hline CO 5 & \begin{tabular}{l} 
develop qualitative tools to characterize \\
connectedness, compactness, second countable, \\
Hausdorff and develop tools to identify when two \\
are equivalent (homeomorphic).
\end{tabular} & K 6 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CO} & \multicolumn{5}{|c|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mean \\
Scores \\
of COs
\end{tabular}} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 4 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 5 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.56 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning Source:https://ocw.mit.edu/courses/mathematics/18-901-introduction-to-topology-fall-2004/

Objective: To obtain knowledge on linear programming problems, queuing models, inventory models, dynamic programming and nonlinear programming problems.

Unit - I: Advanced Topics in Linear Programming
The Revised Simplex Method - Duality Theory and its Applications - The Dual Simplex Method.
(Chapter 4, Sections: 4.1 to 4.3 )
Unit - II: Queueing Models
Introduction - An Example - General Characteristics - Performance Measures - Relations among the Performance Measures - Markovian Queueing Models - The (M/M/1) Model - Limited Queue Capacity - Multiple Servers.
(Chapter 7, Sections: 7.1 to 7.9)
Unit - III: Inventory Models
Introduction - Deterministic Models - Probabilistic Models.
(Chapter 8, Sections: 8.1 to 8.11 )
Unit - IV: Dynamic Programming
Basic concepts - The development of Dynamic Programming - Illustrative Examples - Continuous State Dynamic Programming.
(Chapter 10, Sections: 10.1 to 10.12 (Omit 10.6))
Unit - V: Non Linear Programming
Basic concepts - Unconstrained Optimization - Gradient projection - Constrained Optimization Problems: Equality constraints - Constrained optimization problems: Inequality Constraints.
(Chapter 11, Sections: 11.1 to 11.2 and 11.5 to 11.9)
Book for Study
1. Ravindran, Don. T. Philips, James J. Solberg, Operations Research Principles and Practice, 2-e, John Wiley \& sons, New York, 2006.

\section*{Books for Reference}
1. Frederic S. Hillier and Gerald J. Lieberman, Operations Research, 2-e, CBS Publishers Distributors, Delhi, 1999.
2. Hamdy A. Taha, Operations Research, 5-e, Prentice Hall of India, Pvt. Ltd, New Delhi, 2008.
3. Sasieni, Arthur Yaspan, Lawrence Friedman, Operations Research Methods and Problems, Wiley International Edition, 1959.
4. S. D. Sharma, Operations Research, 15-e, Kedarnath Ram Nath \& Co Publishers, 2007.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
formulate the primal linear programming problem \\
into standard form and use the simplex method or \\
revised simplex method to solve it.
\end{tabular} & K 6 \\
\hline CO 2 & \begin{tabular}{l} 
modify a primal problem and use the fundamental \\
insight of linear programming to identify the new \\
solution or use dual simplex method.
\end{tabular} & K 3 \\
\hline CO 3 & \begin{tabular}{l} 
understand the concept of complementary slackness \\
and its role in solving primal/dual problem pairs.
\end{tabular} & K 2 \\
\hline CO 4 & \begin{tabular}{l} 
examine and evaluate classical linear programming \\
problems such as dynamic programming problem \\
and non-linear programming problem.
\end{tabular} & \(\mathrm{K} 1, \mathrm{~K} 5\) \\
\hline CO 5 & \begin{tabular}{l} 
categorize queueing models
\end{tabular} & K 4 \\
\hline
\end{tabular}

\section*{Mapping of CO with PO and PSO:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 4 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 5 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.62 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: http://www.pondiuni.edu.in/storage/dde/downloads/mbaii qt.pdf

\section*{FLUID DYNAMICS}

Objective: This course aims to provide basic knowledge in kinematics of fluids in motion, equations of motion of a fluid, three dimensional flows and viscous flows.

\section*{Unit - I: Kinematics of Fluids in Motion}

Real fluids and Ideal fluids - Velocity of a Fluid at a Point - Streamlines and Pathlines; Steady and Unsteady flows - The Velocity Potential - The Vorticity Vector - Local and Particle Rates of Change - The Equation of Continuity - Worked Examples - Acceleration of a Fluid. (Chapter 2, Sections: 2.1 to 2.9 )

Unit - II: Equations of Motion of a Fluid
Pressure at a Point in a Fluid at Rest - Pressure at a Point in a Moving Fluid - Conditions at a Boundary of Two Inviscid Immiscible Fluids - Euler's Equations of Motion - Bernoulli's Equation - Worked examples.
(Chapter 3, Sections: 3.1 to 3.6)
Unit - III: Some Three Dimensional Flows
Introduction - Sources, Sinks and Doublets - Axi-Symmetric Flows: Stokes's Stream Function. (Chapter 4, Sections: 4.1, 4.2, 4.5)

\section*{Unit - IV: Some Two Dimensional Flows}

Meaning of Two-Dimensional Flow - Use of Cylindrical Polar Coordinates - The Stream Function - The Complex Potential for Two-Dimensional, Irrotational, Incompressible Flow - Complex Velocity Potentials for Standard Two-Dimensional Flows - Some Worked Examples. (Chapter 5, Sections: 5.1 to 5.6)

Unit - V: Viscous Flows
Stress Components in Real Fluid - Relations between Cartesian Components of Stress - Translation Motion of Fluid Element - The Rate of Strain Quadric and Principal Stresses - Some Further Properties of the Rate of Strain Quadric - Stress Analysis in Fluid Motion - Relations between Stress and Rate of Strain - The Coefficient of Viscosity and Laminar Flow - The Navier-Stokes Equations of Motion of a Viscous Fluid.
(Chapter 8, Sections: 8.1 to 8.9)

\section*{Book for Study}
1. F. Chorlton, Text book of Fluid Dynamics, CBS Publishers \& Distributors Pvt., Ltd., New Delhi, Reprint 2004.

\section*{Books for Reference}
1. A.R.Paterson, A First Course in Fluid Dynamics, Cambridge University Press, New York, 1987.
2. G.K. Batchelor, An Introduction of Fluid Mechanics, Foundation Books, New Delhi, 1993.
3. R. K. Rathy, An Introduction to Fluid Dynamics, IBH Publishing Company, New Delhi, 1976.
4. R.Von Mises, O. Friedrichs, Fluid Dynamics, Springer International Student Edition, Narosa Publishing House, New Delhi, 1980.

\section*{Course Learning Outcomes}
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
Bring out the basic knowledge in Kinematics of fluids in \\
motion.
\end{tabular} & K 1 \\
\hline CO 2 & \begin{tabular}{l} 
understand the meaning of two dimensional and three \\
dimensional flow and related problems.
\end{tabular} & K 2 \\
\hline CO 3 & \begin{tabular}{l} 
analyze simple fluid flow problems (flow between parallel \\
plates, flow through pipe etc.) with Navier-Stoke's equation \\
of motion.
\end{tabular} & K 4 \\
\hline CO 4 & \begin{tabular}{l} 
construct and evaluate problems based on two and three \\
dimensional flow.
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 5\) \\
\hline CO5 & interpret the real life application of the concepts. & K 6 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 3 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 4 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.6 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: http://web.mit.edu/1.63/www/lecnote.html

\section*{NONLINEAR DYNAMICAL SYSTEMS}

Objective: To learn and apply phase plane analysis and stability techniques to problems in Science and technology.

\section*{Unit - I: Plane Autonomous Systems and Linearization}

The general phase plane - Some population models - Linear approximation at equilibrium points The general solution of linear autonomous plane systems - The phase paths of linear autonomous plane systems - Scaling in the phase diagram for a linear autonomous system - Constructing a phase diagram.
(Chapter 2, Sections: 2.1 to 2.7)

\section*{Unit - II: Periodic Solutions and Averaging methods}

An energy-balance method for limit cycles - Amplitude and frequency estimates: polar coordinates - An averaging method for spiral phase paths - Periodic solutions: harmonic balance - The equivalent linear equation by harmonic balance.
(Chapter 4, Sections: 4.1 to 4.5 )

\section*{Unit - III: Perturbation Methods}

Non-autonomous systems: forced oscillations - The direct perturbation method for the undamped Duffing's equation - Forced oscillations far from resonance - Forced oscillations near resonance with weak excitation - The amplitude equation for the undamped pendulum - The amplitude equation for a damped pendulum - Soft and hard springs - Amplitude-phase perturbation for the pendulum equation - Periodic solutions of autonomous equations (Lindstedt's method) - Forced oscillation of a self-excited equation - The perturbation method and Fourier series.
(Chapter 5, Sections: 5.1 to 5.11)
Unit - IV: Stability
Poincaré stability (stability of paths) - Paths and solution curves for general systems - Stability of time solutions: Lyapunov stability - Lyapunov stability of plane autonomous linear systems Structure of the solutions of n-dimensional linear systems.
(Chapter 8, Sections: 8.1 to 8.5 )

\section*{Unit - V: Stability (Continued)}

Structure of n-dimensional inhomogeneous linear systems -Stability and boundedness for linear systems - Stability of linear systems with constant coefficients - Linear approximation at equilibrium points for first-order systems in \(n\) variables - Stability of a class of non-autonomous linear systems in \(n\) dimensions - Stability of the zero solutions of nearly linear systems.
(Chapter 8, Sections: 8.6 to 8.11 )

\section*{Book for Study}
1. D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers, Fourth Edition, Oxford University Press, 2007.

\section*{Books for Reference}
1. D. A. Sanchez, Freeman, Ordinary Differential Equations and Stability Theory, Dover Publications, Inc. New York, 1968.
2. G. F. Simmons, Differential Equations, Tata McGraw Hill, New Delhi, 1979.
3. J. K. Agarwal, Notes on Nonlinear Systems, Van Nostrand, 1972.
4. M. D. Raisinghania, Advanced Differential Equations, S.Chand \& Company Ltd., New Delhi, 2001.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
understand phase plane analysis and stability techniques \\
to evaluate problems in Science and technology.
\end{tabular} & K2, K5 \\
\hline CO 2 & describe these concepts with examples. & K 1 \\
\hline CO 3 & \begin{tabular}{l} 
propose and solve interesting examples of Dynamical \\
Systems
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 6\) \\
\hline CO 4 & establish stability results & K 3 \\
\hline CO 5 & point out the importance of modelling physical systems & K 4 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 4 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2 & 2.5 \\
\hline 5 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.56 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-243j-dynamics-of-nonlinear-systems-fall-2003/

\section*{SKILL ENHANCEMENT COURSE III - REAL ANALYSIS}

Objective: Empowering students to crack competitive examinations such as NET, SET and TRB. To complement the theoretical content of the subject with exercise problems.

\section*{Unit - I: Real number system and Infinite Series}

Field Structures and Order Structure - Bounded and Unbounded sets: Supremum, Infimum Completeness in the Set of Real Numbers - Absolute Value of a Real Number - Limit Points of a set - Closed Sets: Closure of a set - Countable and Uncountable Sets - Sequences - Limits Point of a Sequences - Limits Inferior and Superior - Convergent Sequences - Non-Convergent sequences - Cauchy General Principle of Convergence - Algebra of Sequences - Some Important Theorems - Monotonic Sequences - Positive Term series - Comparison tests for Positive term Series - Cauchy's Root, D'Alembert's Ratio, Raabe's, Logarithmic, Integral and Gauss Tests Series with Arbitrary terms - Rearrangement of Terms
(Chapters 1 to 4 - Examples and exercises)
Unit - II: Functions of a Single Variable
Limits - Continuous Functions - Functions Continuous on Closed Intervals - Uniform Continuity Derivative - Continuous Functions - Increasing and Decreasing Functions - Darboux's, Rolle's, Lagrange's Mean Value and Cauchy's Mean Value Theorems - Higher Order Derivatives.
(Chapters 5, 6-Examples and exercises).

\section*{Unit - III: Riemann and Improper Integrals}

Definitions and Existence of the Integral - Refinement of Partitions - Darboux's Theorem Conditions of Integrability - Integrability of the sum and Difference of Integrable Functions - The Integral as a Limit of Sums - Some Integrable Functions - Integration and differentiation - The Fundamental Theorem of Calculus - Mean Value Theorems of Integral Calculus - Integration by Parts - Change of Variables in an Integral - Second Mean Value Theorem -Integration of Unbounded Functions with Finite Limits of Integration - Comparison Tests for Convergence at ' \(a\) ' in \(\int_{a}^{b} f(x) d x\) - Infinite Range of Integration - Integrand as a Product of Functions - Pointwise Convergence - Uniform Convergence on an Interval - Tests for Uniform Convergence - Properties of Uniformly Convergent Sequences and Series - The Weierstrass Approximation Theorem.
(Chapters 9, 11, 12 - Examples and exercises)

\section*{Unit - IV: Functions of Several Variables}

Explicit and Implicit Functions - Continuity - Partial derivatives - Differentiability - Partial Derivatives of Higher Order - Differentials of Higher Order - Function of functions - Change of Variables - Taylor's Theorem - Extreme Values: Maxima and Minima - Functions of Several Variables - Jacobians - Stationary Values under Subsidiary Conditions.
(Chapters 15, 16 - Examples and exercises)

\section*{Unit - V: Metric Spaces and Lebesgue Integral}

Metric Spaces - Measurable Sets - Sets of Measure Zero - Borel Sets - Non-Measurable Sets Measurable Functions - Measurability of the sum, difference, product and quotient Measurable functions - Lebesgue Integral - Properties of Lebesgue Integral for Bounded Measurable Functions - Lebesgue Integral for Bounded set of finite measure and unbounded Functions - The General Integral - Some Fundamental Theorems - Lebesgue Theorem on Bounded Convergence Integrability and Measurability - Lebesgue Integral on unbounded sets or intervals - Comparison with Riemann Integral for Unbounded Sets
(Chapters 19,20 - Examples and exercises)

\section*{Book for Study}
1. S.C. Malik, Savita Arora, Mathematical Analysis, New age International Publishers, New Delhi, 2011.

\section*{Books for Reference}
1. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983.
2. P.N. Arora and Ranjit Singh, First course in Real Analysis, Third edition, Sultan Chand and Sons Publishers, New Delhi, 1981.
3. Richard R. Goldsberg, Methods of Real Analysis, Oxford \& IBH Publishing Co. Pvt. Ltd, New Delhi, 1970.
4. Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis, 2-e John Wiley and Sons, 2000.
5. S. Arumugam, Modern Analysis, New Gamma Publishers, Palayamkottai, 1993.

\section*{Course Learning Outcomes}
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & apply the theoretical knowledge in solving problems. & K 3 \\
\hline CO 2 & \begin{tabular}{l} 
attempt competitive examinations such as NET, SET and \\
TRB.
\end{tabular} & K 1 \\
\hline CO 3 & \begin{tabular}{l} 
Extend their knowledge of Lebesgue theory of integration by \\
selecting and applying its tools for further research in this \\
and other related areas
\end{tabular} & \(\mathrm{K} 2, \mathrm{~K} 3\) \\
\hline CO 4 & \begin{tabular}{l} 
Recognize the need of concept of measure from a practical \\
view point.
\end{tabular} & K 1 \\
\hline CO 5 & \begin{tabular}{l} 
Understand the nature of abstract mathematics and explore \\
the concepts in further details.
\end{tabular} & K 2 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ CO } & \multicolumn{4}{|c|}{ Programme Outcomes (PO) } & \multicolumn{5}{c|}{ Programme Specific Outcomes } & \(\begin{array}{c}\text { Mean } \\
\text { (PSO) }\end{array}\) \\
\cline { 2 - 13 } & Cores \\
of
\end{tabular}\(\}\)

E-Learning Source: https://ocw.mit.edu/courses/mathematics/18-100c-real- analysis-fall-2012/

\section*{MATHEMATICAL PHYSICS}

Objective: This course intends to introduce applications of various mathematical techniques to problems of Theoretical Physics. Examples could be chosen from all 4 traditional divisions of Modern Fundamental Theoretical Physics - Classical Mechanics, Electrodynamics, Quantum Mechanics and Statistical Physics.

\section*{Unit 1:}

Vector calculus and applications in electromagnetic theory and fluid mechanics.
Unit 2:
Introduction to tensor calculus: review of basics, index notation, tensors in physics and geometry, Levi-Civita tensor, transformations of vectors, tensors and vector fields, covariance of laws of physics.

Unit 3:
Calculus of variations and extremal problems, Lagrange muItipliers to treat constraints,
Introduction to the Lagrangian and Hamiltonian
formulations of classical mechanics with applications.
Unit 4:
Gamma and Beta functions, Dirac delta function, Special functions, Review of Legendre, Bessel functions and spherical harmonics (with applications to Quantum mechanics), series solutions, generating functions, orthogonality and completeness,

\section*{Unit 5:}

Applied linear algebra: Dirac notation, dual vectors, projection operators, symmetric hermitian, orthogonal and unitary matrices in physics, diagonalization, orthogonality and completeness of eigenvectors, spectral decomposition and representation, simultaneous diagonalization, normal matrices, applications to coupled vibrations, Schrodinger equation in matrix form.

\section*{Books for Study}
1. Arften and Weber, Mathematical Methods for Physics, Elsevier, 6th Ed., 2005.
2. Riley, Hobson and Bence, Mathematical Methods for Physics and Engineering, Cup, 3rd Edition, 2010.

Books for References:
1. P. K. Chattopadhyay, Mathematical Physics, Wiley Eastern, New Delhi, 1992.
2. S. S. Rajput, Mathematical Physics, Pragati Pragasan, Meerut, 11th Edition, 1996.
3. Charlie Harper, Introduction to Mathematical Physics, California State University, Hayward.
4. B. D. Gupta, Mathematical Physics, Vikas Publishing House Pvt. Ltd, New Delhi, 2004.
5. L. A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, McGraw Hill, London, 1970.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline \(\mathrm{CO1}\) & \begin{tabular}{l} 
describe and employ the concepts of Gradient, \\
Divergence, Curl and their typical applications in \\
Physics.
\end{tabular} & \(\mathrm{K} 1, \mathrm{~K} 3\) \\
\hline CO 2 & \begin{tabular}{l} 
prioritize special functions like Gamma function, Beta \\
function, Dirac function, Delta function, Bessel function \\
and their relations.
\end{tabular} & K 4 \\
\hline CO 3 & \begin{tabular}{l} 
Illustrate Lagrangian and Hamitonian approaches in \\
classical mechanics.
\end{tabular} & K 2 \\
\hline CO 4 & adapt to tensors in physics. & K 6 \\
\hline CO 5 & \begin{tabular}{l} 
evaluate special type of matrices that are relevant in \\
Physics.
\end{tabular} & K 5 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 1 & 1 & 3 & 3 & 3 & 2 & 1 & 2.3 \\
\hline 4 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 1 & 1 & 3 & 3 & 3 & 2 & 2 & 2.4 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.52 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-learning sources: https://nptel.ac.in/courses/115/103/115103036/\#

Code: M9XX
Hours : 30/Sem
Year/Semester: II / III
Objective: To train students in the preparation of projects and dissertations using LaTex.

\section*{Unit - I: Basic Document and Bibliography}

What is LATEX - Simple typesetting - Fonts Type size - Document class - page style - page numbering - Formatting lengths - parts of a document - Dividing the document - what next? Introduction - natbib - The BIBTEX program - BIBTEX Style files - Creating a bibliographic database.
(Chapters 1-4)
Unit - II: Contents, Index, Glossary, Text, Row and Column
Table of contents - Index - Glossary. Borrowed words - Poetry in typing - Making lists - When order matters - Description and definitions.
(Chapters 5-7)

\section*{Unit - III: Typesetting Equations and Theorems}

Keeping tabs - Tables - The basics - Custom commands - More on mathematics - mathematics miscellany - New operations- The many fact of mathematics - Symbols - Theory in LATEX Designer theorem-the amsthm package - Housekeeping.
(Chapters 8-9)

\section*{Unit - IV: Several Kinds of boxes and Floats}

LR boxes - Paragraph boxes - Paragraph boxes with specific height - Nested boxes - Role boxes The figure environment - The table environment.
(Chapters 10-11)
Unit - V: Cross References in LATEX, Footnotes, Margin pars and Endnotes
Why cross reference? - Let LATEX do it - Pointing to a page-the package varioref - Pointing outside-the package xr - Lost the keys? Use lables.tex - Footnotes - Marginal notes - Endnotes. (Chapters 12-13)

\section*{Book for Study}
1. A Primer, Latex Tutorials, Indian TEX users group, Trivandrum, India.www.tug.org.in

\section*{Books for Reference}
1. Peter Flynn, A beginner's introduction to typesetting with LATEX, Silmaril Consultants, Textual Therapy Division, 2003.
2. George Gratzer, More Math into LATEX, 4th Edition, Springer Science, 2007.
3. Frank Mittelbach, Michel Goossens, The LaTex Companion, Second Edition, AddisonWesley, 2004.
4. Apostolos Syropoulos, Antonis Tsolomitis, Nick Sofroniou, Digital Typography using Latex, With 68 Illustrations, Springer-Verlag, 2003.
5. Dr Helmut Kopka, Dr Patrick Daly, A Guide to Latex: Document preparation for beginners and advanced users, Addison Wesley; 3rd edition (4 January 1999)

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
define preamble for preparation of documents with paragraphs \\
and sections
\end{tabular} & K 1 \\
\hline CO 2 & \begin{tabular}{l} 
understand basic typesetting mathematical expressions and \\
numbered equations
\end{tabular} & K 2 \\
\hline CO 3 & \begin{tabular}{l} 
explain and demonstrate different packages and construct \\
tables and insert figures in the document.
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 4\) \\
\hline CO 4 & find and resolve errors that occurs. & K 5 \\
\hline CO 5 & \begin{tabular}{l} 
compile the source file to get expected output form as \\
required.
\end{tabular} & K 6 \\
\hline
\end{tabular}

E Learning Resources: https://www.latex-tutorial.com/tutorials/ https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf https://www.latex-tutorial.com
http://www.tug.org.in/tutorials.html
https://miktex.org/
http://www.docs.is.ed.ac.uk/skills/documents/3722/3722-2014.pdf

\section*{Certificate Course - Mathematics for Competitive Examinations - I (IDC)}

Code: M9XX
Year/Semester: II / III

Hours : 30/Sem
Credits: 2*

Objective: To prepare the students for competitive examinations

Unit - I

Average- Problems on numbers-Problems on Ages.
(Book 1: Chapters6, 7, 8)
Unit - II

Percentage - Profit and Loss - Partnership - Ratio and proportion.
(Book 1: Chapters 10, 11, 13)
Unit - III
Time and work-Time and distance-Problems on Trains.
(Book 1: Chapters 15,17, 18).
Unit - IV
Analogy - Classification - Series Completion - Coding - Decoding - Blood Relations.
(Book 2, Chapter - 1, Sections 1-5).
Unit - V
Puzzle Test - Sequential Output Tracing - Direction Sense Test - Logical Venn Diagrams Alphabet Test.
(Book 2, Chapter - 1, Sections 6-10).

\section*{Books for Study}
1. R. S. Aggarwal, Quantitative Aptitude for Competitive Examinations, Revised Edition, S. Chand and Company Ltd., Ram Nagar, New Delhi, Reprint 2012.
2. R. S. Agarwal, A Modern Approach To Verbal And Nonverbal Reasoning, S. Chand, 2005.

\section*{Book for Reference:}
1. V.V. K. Subbiraj, Test of Reasoning - Verbal/Non-Verbal \& General Intelligence for Competitive Examinations, Sura Books, 2007.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
make critique of quantitative information using proportional \\
reasoning
\end{tabular} & K 5 \\
\hline CO 2 & Interpret and compare weighted averages, indices, ranking. & K 2 \\
\hline CO 3 & \begin{tabular}{l} 
identify uses and misuses of percentages related to a proper \\
understanding of the bases.
\end{tabular} & K 1 \\
\hline CO 4 & examining and estimating percentages as rates per 100 & \(\mathrm{K} 3, \mathrm{~K} 4\) \\
\hline CO 5 & solve for an unknown quantity in proportional situation & K 6 \\
\hline
\end{tabular}

E-learning source: www.tcyonline.com/tests/mathematics-competitive-exam
http://www.indiabix.com/online-test/non-verbal-reasoning-test/
http://books.tamilcube.com/career/aptitude-test/non-verbal-reasoning/non-verbal-reasoning-questions-001.aspx https://www.kent.ac.uk/careers/tests/spatialtest.htm http://www.careerbless.com/aptitude/qa/home.php http://www.careerride.com/online-aptitude-test.aspx

\section*{Complex Function Theory}

Objective: To study the Maximum Principle, Schwarz Lemma, Evaluation of Certain Integrals, Analytic Continuation, Representation of Meromorphic and Entire Functions and Mapping Theorems.

Unit - I: Maximum Principle, Schwarz' Lemma and Liouville's Theorem
Maximum Modulus Principle - Hadamard's Three Circles/Lines Theorems - Schwarz's Lemma and its Consequences - Liouville's Theorem - Doubly Periodic Entire Function - Fundamental Theorem of Algebra - Zeros of certain Polynomials
(Chapter 6, Sections: 6.1 to 6.7)
Unit - II: Evaluation of Certain Integrals
Integrals of type \(\int_{\alpha}^{2 \pi+\alpha} R(\cos \theta, \sin \theta) d \theta\) - Integrals of type \(\int_{-\infty}^{\infty} f(x) d x\) - Integrals of type \(\int_{-\infty}^{\infty} g(x) \cos m x d x\) - Singularities on the Real Axis - Exercises.
(Chapter 9, Sections: 9.1 to 9.4 and 9.7 (9.73 to 9.76))

\section*{Unit - III: Analytic Continuation}

Direct Analytic Continuation - Monodromy Theorem - Poisson Integral Formula - Analytic Continuation via Reflection.
(Chapter 10, Sections: 10.1 to 10.4)
Unit - IV: Representations of Meromorphic and Entire Functions
Infinite Sums and Meromorphic Functions - Infinite Product of Complex Numbers - Infinite Product of Analytic functions - Factorization of Entire Functions - The Gamma Function - The Zeta Function.
(Chapter 11, Sections: 11.1 to 11.6)

\section*{Unit - V: Mapping Theorems}

Open Mapping Theorem and Hurwitz' Theorem - Basic Results on Univalent Functions - Normal Families - The Riemann mapping theorem (without proof) - Bieberbach Conjecture - The BlochLandau Theorems
(Chapter 12, Sections: 12.1 to 12.6)

\section*{Book for Study}
1. S. Ponnusamy, Foundations of Complex Analysis, Second Edition, Narosa Publishing House, New Delhi, 2005.

\section*{Books for Reference}
1. Lars. V. Ahlfors, Complex Analysis, Third Edition, Indian Edition, McGraw Hill, Inc. in 1979.
2. Theodore W. Gamelin, Complex Analysis, Springer- Verlag New York, Inc. in 2001.
3. B. Choudhary, The Elements of Complex Analysis, 2-e, Wiley Eastern Limited, 1992.
4. Boston, Complex Variables, Silverman- Houghton Mifflin Company, 1975.
5. John B. Conway, Functions of One Complex Variable, 2-e, Springer International student Edition, 1973.
6. S. Arumugam, A. Thangapandi Isaac, A. Somasundram, Complex Analysis, Scitech Publications Pvt. Ltd., New Delhi, 2007.
7. Serge Lang, Complex Analysis, 2-e, Springer-Verlag, New York, 1993.

\section*{Course Learning Outcomes}
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
develop the maximum assistance in mastering the \\
fundamental concepts and techniques of Complex \\
Function Theory.
\end{tabular} & K 6 \\
\hline CO 2 & \begin{tabular}{l} 
establish Maximum principle, Schwarz lemma and \\
Liouville's theorem.
\end{tabular} & K 3 \\
\hline CO 3 & evaluate different Types of Integral. & K 5 \\
\hline CO 4 & \begin{tabular}{l} 
examine interesting results concerning certain \\
mapping problems between domains.
\end{tabular} & K 1 \\
\hline CO 5 & \begin{tabular}{l} 
understand and analyze the concept of Analytic \\
Continuation.
\end{tabular} & \(\mathrm{K} 2, \mathrm{~K} 4\) \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|c|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Mean } \\
\text { Scores } \\
\text { of } \\
\text { COs }
\end{gathered}
\]} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 3 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 1 & 2.4 \\
\hline 4 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 5 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.5 \\
\hline & & & & & & & & & & Result & High \\
\hline
\end{tabular}

E - Learning sources: https://ocw.mit.edu/courses/mathematics/18-04-complex-variables-with-applications-fall-2003/

\section*{Functional Analysis}

Objective: To provide students with a strong foundation in functional analysis, focusing on spaces, operators and fundamental theorems. To develop student's skills and confidence in mathematical analysis and proof techniques.

\section*{Unit - I: Banach Spaces}

Definition and Some examples - Continuous linear transformations - The Hahn-Banach theorem.
(Chapter 9, Sections: 46, 47,48)
Unit - II: Banach Spaces (contd.)
The natural imbedding of \(N^{*}\) in \(N^{* *}\) - The Open Mapping theorem - The conjugate of an operator. (Chapter 9, Sections: 49, 50, 51)

Unit - III: Hilbert Spaces
Definition and some simple Properties -Orthogonal complements - Orthonormal sets - The conjugate space \(H^{*}\).
(Chapter 10,Sections: 52, 53, 54, 55)
Unit - IV: Hilbert Spaces (contd.)
The Adjoint of an operator - Self-Adjoint operators -Normal and Unitary operators Projections.(Chapter 10, Sections: 56, 57, 58, 59)

\section*{Unit - V: Algebras of Operators}

The definition and some Examples - Regular and singular elements - Topological divisors of zero The Spectrum - The formula for the spectral radius.
(Chapter 12,Sections: 64, 65, 66, 67, 68)

\section*{Book for Study}
1. Simmons G.F., Introduction to Topology and Modern Analysis, McGraw - Hill International Book Company, New York, 22 \({ }^{\text {nd }}\) reprint 2014.

\section*{Books for Reference}
1. B. Choudhary, Sudarsan Nanda, Functional Analysis with Applications, Wiley Eastern Limited, New Delhi, 1989.
2. B. V. Limaye, Functional Analysis, 2-e, New Age International Ltd, Publishers, 1996.
3. Chandrasekara Rao. K, Functional Analysis, Narosa Publishing House, 2006.
4. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley\& Sons, New York, 1978.
5. Ponnusamy. S, Foundations of Functional Analysis, Narosa Publishing House, New Delhi, 2002.
6. Somasundaram. D, A First Course in Functional Analysis, Narosa Publishing House, New Delhi, 2006.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
understand the Banach spaces and Transformations on \\
Banach Spaces.
\end{tabular} & K 2 \\
\hline CO 2 & prove Hahn Banach theorem and open mapping theorem. & K 5 \\
\hline CO 3 & validate orthogonal and orthonormal sets. & K 1 \\
\hline CO 4 & Analyze and establish the regular and singular elements. & \(\mathrm{K} 3, \mathrm{~K} 4\) \\
\hline CO 56 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 2 & 2.7 \\
\hline 2 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 3 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 1 & 2.4 \\
\hline 4 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 1 & 2.4 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.52 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: http://www.math.ucdavis.edu/~hunter/book/ch5.pdf

\section*{Difference Equations}

Objective: To introduce the process of discretization, discrete version of Differential Equations, oscillation and the asymptotic behaviour of solutions of certain class of difference equations. Solving difference equations using z-transforms is stressed.

\section*{Unit - I: The Difference Calculus}

The Difference Operator - Summation - Generating Functions and Approximate Summation. (Book 1: Chapter 2, Sections: 2.1-2.3)

\section*{Unit - II: Linear Difference Equations}

First order Equations - General Results for Linear Equations - Solving Linear Equations Applications - Equations with Variable Coefficients.
(Book 1: Chapter 3, Sections: 3.1-3.5)

\section*{Unit - III: The Z-transform Method}

Definitions and Examples, Properties of the Z-transform - The Inverse Z-transform and Solutions of Difference Equations: The power series method, the partial fractions method and inversion integral method - Volterra Difference Equation of convolution type (The scalar case).
(Book 2: Chapter 6, Sections: 6.1-6.3)

\section*{Unit - IV: Oscillation Theory}

Three-term difference Equations - Self-Adjoint Second Order Equations - Nonlinear Difference Equations.
(Book 2: Chapter 7, Sections: 7.1-7.3)

\section*{Unit - V: Asymptotic Behaviour of Difference Equations}

Tools of Approximation - Poincare's Theorem - Asymptotically Diagonal Systems - High-Order Difference Equations - Second Order Difference Equations.
(Book 2: Chapter 8, Sections: 8.1-8.5)

\section*{Books for Study}
1. Walter G. Kelley, Allan C. Peterson, Difference Equations, An Introduction with Applications, Second Edition, Academic Press, New York, 2001.
2. Saber N. Elaydi, An Introduction to Difference Equations, Third Edition, Springer Verlag, New York, 2005 (First Indian Reprint 2008).

\section*{Books for Reference}
1. Ronald E. Mickens, Difference Equations Theory, Applications and Advanced Topics, Third Edition, CRC Press, New York, 2015.
2. R. P. Agarwal., Difference Equations and Inequalities, Marcel Dekker, 1999.
3. S. Goldberg, Introduction to Difference Equations, Dover Publications, 1986
4. V. Lakshmikantham and Trigiante, Theory of Difference Equations Numerical Methods and Applications, Second Edition, Academic Press, New York, 1988.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & define the basic concepts of difference equations. & K 1 \\
\hline CO 2 & solve difference equations using z-transforms. & K 3 \\
\hline CO 3 & explain the oscillatory behaviour of difference equations. & K 3 \\
\hline CO 4 & \begin{tabular}{l} 
analyze and evaluate the asymptotic behaviour of solutions \\
of certain class of difference equations.
\end{tabular} & \(\mathrm{K} 4, \mathrm{~K} 5\) \\
\hline CO5 & \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CO} & \multicolumn{5}{|c|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 3 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2 & 2.5 \\
\hline 4 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 1 & 2.5 \\
\hline 5 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 1 & 2.4 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.5 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E - Learning source: http://people.math.aau.dk/~matarne/11-imat/notes2011a.pdf,
http://pj.freefaculty.org/guides/stat/Math/DifferenceEquations/DifferenceEquations-guide.pdf

\section*{Stochastic Processes}

Objective: To introduce to the students the basic ideas of Stochastic processes, Markov chains, Markov process and Renewal process and to motivate research in these areas.

Unit - I: Stationary Process
Specification of Stochastic processes - Stationary processes - Markov chains - Definitions and Examples - Higher Transition Probabilities - Generalization of Independent Bernoulli trails Sequence of chain dependent trials.
(Chapter 2, Sections: 2.2-2.3; Chapter 3,Sections:3.1-3.3)

\section*{Unit - II: Markov Chains}

Stability of a Markov system - Graph theoretic approach-Markov chain with denumerable Number of states - Reducible chains - Statistical inference for Markov chains.
(Chapter 3, Sections: 3.6-3.10)
Unit - III: Markov Processes with Discrete State Space: Poisson process and its extensions
Poisson process - Poisson process and related distributions - Generalizations of Poisson process Birth and death process - Markov process with discrete state space (Continuous time Markov chains).
(Chapter 4, Sections: 4.1-4.5)

Unit - IV: Markov Processes with Continuous State Space
Brownian motion-Wiener process - Differential equations for a Wiener process - Kolmogorov Equations - First Passage time distribution for Wiener process.
(Chapter 5, Sections: 5.1-5.5)
Unit - V: Renewal Processes and Theory
Renewal process - Renewal process in continuous time - Renewal equation - Stopping time: Wald's equation - Renewal theorems- Delayed and equilibrium renewal processes.
(Chapter 6,Sections: 6.1-6.6)

\section*{Book for Study}
1. J.Medhi, Stochastic Processes, Second edition, New Age International Publication, New Delhi, 2002.

\section*{Books for Reference}
1. Erhan Cinlar, Introduction to Stochastic process, Prentice Hall Inc., 1975
2. Samauel Karlin, A first course in Stochastic process, 2-e, Academic press 1968.
3. S. K. Srinivasan and A. Vijayakumar, Stochastic Process, Narosa Publishing House, New Delhi, 2003.
4. V. NarauyanBhat, Elements of Applied Stochastic Processes, John Wiley and sons, 1972.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
demonstrate the basic concepts of Stochastic process, \\
Markov chains.
\end{tabular} & K 2 \\
\hline CO 2 & apply the concepts in practical problems & K 1 \\
\hline CO 3 & \begin{tabular}{l} 
compose and evaluate simple Markovian Queueing \\
models.
\end{tabular} & K 3 \\
\hline CO 4 & analyze and evaluate renewal equations & \(\mathrm{K} 64, \mathrm{~K} 5\) \\
\hline CO 5 & & \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CO} & \multicolumn{5}{|l|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 4 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 1 & 1 & 3 & 3 & 3 & 2 & 1 & 2.3 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.54 \\
\hline & & & & & & & & & & Result & High \\
\hline
\end{tabular}

E-Learning source: www.expocentral.com/directory/scence/math/stochastic/process

\section*{Skill Enhancement Course IV- Complex Analysis}

Objective: Empowering students to crack competitive examinations such as NET, SET and TRB.
To complement the theoretical content of the subject with exercise problems
Unit - I: Analytic Functions and Power Series
Differentiability and Cauchy-Riemann Equations -Harmonic Functions -Power Series as an Analytic Function - Exponential and Trigonometric Functions - Logarithmic Functions - Inverse Functions.
(Chapter 3, Sections: 3.1-3.6)

\section*{Unit - II: Complex Integration}

Curves in the Complex Plane - Properties of Complex Line Integrals - Winding Number or Index of a Curve - Cauchy Integral Formula -Morera's Theorem- Taylor's Theorem - Zeros of Analytic Functions - Laurent Series.
(Chapter 4, Sections: 4.1, 4.2, 4.5, 4.7, 4.8, 4.10-4.12)
Unit - III: Conformal Mappings and Mobius Transformations
Principle of Conformal Mapping - Basic Properties of Mobius Maps - Fixed Points and Mobius Maps - Triples to Triples under Mobius Maps - The Cross-Ratio and its Invariance Property Conformal Self-maps of Disks and Half-planes.
(Chapter 5, Sections: 5.1-5.6)
Unit - IV: Maximum Principle and Singularities
Maximum Modulus Principle - Liouville's Theorem -Doubly Periodic Entire Functions Fundamental Theorem of Algebra - Zeros of certain Polynomials-Isolated and Non-isolated Singularities - Removable Singularities - Poles - Further Illustrations through Laurent's Series Meromorphic Functions.
(Chapter 6, Sections: 6.1, 6.4-6.7, Chapter 7, Sections: 7.1-7.4, 7.6)
Unit - V: Calculus of Residues
Residue at a Finite Point - Residue at the Point at Infinity - Residue Theorem - Number of Zeros and Poles - Rouche's Theorem.
(Chapter 8, Sections: 8.1-8.5)
Book for Study
S. Ponnusamy, Foundations of Complex Analysis, Second Edition, Narosa Publishing House, New Delhi, 2012.

\section*{Books for Reference}
1. B. Choudhary, The Elements of Complex Analysis, 2-e, Wiley Eastern Limited, 1992.
2. Boston, Complex Variables, Silverman- Houghton Mifflin Company, 1975.
3. John B. Conway, Functions of One Complex Variable, 2-e, Springer International student Edition, 1973.
4. S. Arumugam, A. Thangapandi Isaac, A. Somasundram, Complex Analysis, Scitech Publications Pvt. Ltd., New Delhi.

Course Learning Outcomes
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
analyze and solve problems on Analytic functions, Power \\
Series and Complex Integration.
\end{tabular} & K3, K4 \\
\hline CO 2 & \begin{tabular}{l} 
Illustrate Conformal Mappings, Mobius Transformation and \\
solve related problems.
\end{tabular} & \(\mathrm{K} 2, \mathrm{~K} 3\) \\
\hline CO 3 & identify Singularities and derive Laurent's series & K 1 \\
\hline CO 4 & formulate Residue Theorem in Contour Integration. & K 6 \\
\hline CO5 & analyze and evaluate problems based on Rouche's Theorem & K4, K5 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{ CO } & \multicolumn{4}{|c|}{ Programme Outcomes (PO) } & \multicolumn{5}{c|}{ Programme Specific Outcomes } & \begin{tabular}{c} 
Mean \\
(PSO)
\end{tabular} \\
\cline { 2 - 13 } & Cores \\
of \\
COs
\end{tabular}\(|\)

\section*{E-Learning Source}
http://www.isibang.ac.in/~statmath/stinc/database /notes /CASolutions.pdf
http://www.unibuc.ro/prof/timofte c/docs/res/2016febComplex-Analysis-Problems.pdf

\section*{Theory of Transforms}

Objective: To impart the basic knowledge of principles of Fourier series and Z-Transforms; To give different techniques to solve integral problems using Transforms.

Unit - I:
Fourier Series - Euler Formulae - Conditions for a Fourier Expansion - Functions having points of discontinuity - Change of Interval - Even and Odd Expansion - Half Range Series - Typical waveforms - Complex Form of Fourier Series - Practical Harmonic Series.
(Chapter 10: Sections 10.1-10.11)

\section*{Unit - II:}

Integral Transforms - Fourier Integral Theorem - Fourier Transforms - Properties of Fourier Transforms - Applications to solve integral problems.
(Chapter 22: Sections 22.1-22.5)

\section*{Unit - III:}

Convolution - Parseval's Identity for Fourier Transforms - Problems - Relation between Fourier and Laplace Transforms - Fourier Transforms of the derivative of a function - Application of Transforms to boundary Value Problems.
(Chapter 22: Sections 22.6-22.9, 22.11)
Unit - IV:
Z - Transform - Some standard Z - Transform - Linearity Property- Damping Rule - Some Standard Results - Shifting \(u_{n}\) to the right and left - Multiplication by \(\mathrm{n}-\) Two basic theorems Problems.
(Chapter 23: Sections 23.1-23.9)
Unit - V:
Some Useful Z - Transforms - Some Useful Inverse Z-transforms - Convolution Theorem Convergence of Z-Transforms - Evaluation of Inverse Z-Transforms - Application of Difference Equations - Problems.
(Chapter 23: Sections 23.10-23.16)

\section*{Book for Study}
1. Dr.B.S. Grewal and J.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, \(40^{\text {th }}\) Edition 2007, Fifth Reprint 2008.

\section*{Books for Reference}
1. Dr. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley \& Sons, Inc, \(8^{\text {th }}\) Edition 1999.
2. James S. Walker, Fourier Analysis, Oxford University Press 1988.

\section*{Course Learning Outcomes}
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{|c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO1 & \begin{tabular}{l} 
summarize knowledge of various mathematical concepts \\
and techniques required for successful application of \\
mathematics in physics and related sciences
\end{tabular} & K 2 \\
\hline CO 2 & examine application of Z-transform. & K 1 \\
\hline CO 3 & \begin{tabular}{l} 
solve differential \& integral equations with initial \\
conditions using Laplace transform.
\end{tabular} & K 3 \\
\hline CO 4 & \begin{tabular}{l} 
analyze and evaluate the Fourier transform of a continuous \\
function and be familiar with its basic properties.
\end{tabular} & \(\mathrm{K} 4, \mathrm{~K} 5\) \\
\hline CO 5 & validate solution of integral equation and their application. & K 6 \\
\hline
\end{tabular}

Mapping of CO with PO and PSO:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CO} & \multicolumn{5}{|c|}{Programme Outcomes (PO)} & \multicolumn{5}{|l|}{Programme Specific Outcomes (PSO)} & \multirow[t]{2}{*}{Mean Scores of COs} \\
\hline & PO1 & PO2 & PO3 & PO4 & PO5 & PSO1 & PSO2 & PSO3 & PSO4 & PSO5 & \\
\hline 1 & 3 & 3 & 3 & 3 & 1 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 2 & 3 & 3 & 3 & 3 & 2 & 3 & 3 & 3 & 2 & 1 & 2.6 \\
\hline 3 & 3 & 3 & 3 & 2 & 1 & 3 & 3 & 3 & 2 & 2 & 2.5 \\
\hline 4 & 3 & 3 & 3 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2.6 \\
\hline 5 & 3 & 3 & 3 & 1 & 1 & 3 & 3 & 3 & 2 & 2 & 2.4 \\
\hline \multicolumn{11}{|r|}{Mean Overall Score} & 2.54 \\
\hline \multicolumn{11}{|r|}{Result} & High \\
\hline
\end{tabular}

E-Learning source: https://onlinecourses.nptel.ac.in/noc20 ma41/preview

Code: M10XX
Year/Semester: II / IV

Hours : 30/Sem Credits : 2*

Objective: Quantitative Aptitude Tests evaluate numerical ability and problem solving skills of candidates. This test forms the major part of a number of important entrance exams for different fields. CAT, MAT, XAT, and GMAT and many other significant exams have Quantitative Aptitude as a major section.
Many companies use it in their selection procedure. Topics that may be included in different exams are:

\section*{Unit - I}

Simple interest, compound Interest - Problems on Calendars and Clocks.
(Book 1: Chapters21, 22, 27, 28).
Unit - II
Permutations and combinations - Tabulation- Bar graphs-Pie Charts - Line Graphs.
(Book 1: Chapters30, 36, 37, 38, 39).
Unit - III
Number, Ranking \& Time Sequence Test - Mathematical Operations-Logical Sequence of Words Arithmetical Reasoning - Inserting the Missing Character.
(Book 2, Section:1, Chapters 11-15)
Unit - IV
Data Sufficiency - Decision Making - Assertion and Reason - Verification of Truth of the Statement - Arguments - Assumptions - Courses of Actions - Conclusions - Question Statements.
(Book 2, Section:1, Chapters \(16-20\), Section:2, Chapters \(2-5,8\) )
Unit - V
Non- Verbal Reasoning - Series - Analogy - Classification - Analytical Reasoning - Completion of Incomplete Pattern - Rule Detection - Grouping of Identical Figures.
(Book 2, Section: 3, Chapter 1-4, 8, 12,13)

\section*{Book for Study}
1. R. S. Aggarwal, Quantitative Aptitude for Competitive Examinations, Revised Edition, S.Chand and Company Ltd., Ram Nagar, New Delhi, Reprint 2012.
2. R. S. Agarwal, A Modern Approach To Verbal And Nonverbal Reasoning, S.CHAND, 2005.

\section*{Book for Reference}
1. V.V. K. Subbiraj, Test of Reasoning - Verbal/Non-Verbal \& General Intelligence for Competitive Examinations, Sura Books, 2007.

\section*{Course Learning Outcomes}
\begin{tabular}{|c|l|c|}
\hline CO Number & \multicolumn{1}{c|}{ CO Statement } & \begin{tabular}{c} 
Knowledge \\
Level
\end{tabular} \\
\hline CO 1 & \begin{tabular}{l} 
make critique of quantitative information using \\
proportional reasoning
\end{tabular} & K 5 \\
\hline CO 2 & \begin{tabular}{l} 
interpret and compare the statements for verification \\
of truth.
\end{tabular} & K 2 \\
\hline CO 3 & \begin{tabular}{l} 
identify suitable methods for providing analytical \\
reasoning.
\end{tabular} & K 1 \\
\hline CO 4 & \begin{tabular}{l} 
examining and estimating simple and compound \\
interest
\end{tabular} & \(\mathrm{K} 3, \mathrm{~K} 4\) \\
\hline CO 5 & \begin{tabular}{l} 
solve problems and provide suitable graphical \\
representation.
\end{tabular} & K 6 \\
\hline
\end{tabular}

\section*{E-Learning Source}
http://www.indiabix.com/online-test/non-verbal-reasoning-test/ http://books.tamilcube.com/career/aptitude-test/non-verbal-reasoning/non-verbal-reasoning-questions-001.aspx, https://www.kent.ac.uk/careers/tests/spatialtest.htm
http://www.careerbless.com/aptitude/qa/home.php,
http://www.careerride.com/online-aptitude-test.aspx```

